please help me with my model

I am very new in GAMS, so that would be great if you can tell me what
I am doing wrong with my model.

Scalar A /1000./;

Sets j attribute / 1 + 6 /
k point number in class vgoog / 1 + 65 /
l point number in class good / 1 + 69 /
m point number in class acc / 1 + 384 /
n point number in class unacc / 1 + 1210 /
h hype number / 1, 2, 3 /;



Variables z
w (h,j)
b (h);

Positive variable e (k,h),
f (l,h),
g (m,h),
i (n,h);

Parameters r (k,j), y (l,j), t (m,j), p (n,j);



Equations obj objective function
cla11(k), cla12(k), cla13(k), cla21(l), cla22(l),
cla23(l),
cla31, cla32, cla33, cla41, cla42, cla43
classification constraints
err11(k), err12(k), err13(k), err14(k), err15(k),
err16(k) error constraints
err21(l), err22(l),
err31(m), err32(m),
err41(n), err42(n), err43(n), err44(n), err45(n),
err46(n);





obj… z =e= (0.5 * (sum (h), w (h,“1”))) + (0.5 * (sum (h), w
(h,“2”))) + (0.5 * (sum (h), w (h,“3”))) +
(0.5 * (sum (h), w (h,“4”))) + (0.5 * (sum (h), w (h,“5”))) + (0.5 *
(sum (h), w (h,“6”))) +
(1 *(( count = sum ((k,h), e (k,h))) + ( count = sum ((l,h), f (l,h)))

  • ( count = sum ((m,h), g(m,h))) + ( count = sum ((n,h), i(n,h))))) ;
  • vgood points

cla11(k)… sum ((j) , w(“1”,j) * r(k,j)) + b (“1”) =g= 1 - e (k,“1”);
cla12(k)… sum ((j) , w(“2”,j) * r(k,j)) + b (“2”) =g= 1 - e (k,“2”);
cla13(k)… sum ((j) , w(“3”,j) * r(k,j)) + b (“3”) =g= 1 - e (k,“3”);

  • good points

cla21(l)… sum ((j) , w(“1”,j) * y(l,j) + b (1) =g= - 1 + f (l,“1”));
cla22(l)… sum ((j) , w(“2”,j) * y(l,j) + b (2) =g= 1 - f (l,“2”));
cla23(l)… sum ((j) , w(“3”,j) * y(l,j) + b (3) =g= 1 - f (l,“3”));

*acc points

cla31(m)… sum ((j) , w(“1”,j) * t(m,j) + b (“1”) =g= - 1 + g
(m,“1”));
cla32(m)… sum ((j) , w(“2”,j) * t(m,j) + b (“2”) =g= - 1 + g
(m,“2”));
cla33(m)… sum ((j) , w(“3”,j) * t(m,j) + b (“3”) =g= 1 - g (m,“3”));

  • unacc points

cla41(n)… sum ((j) , w(“1”,j) * p(n,j) + b (“1”) =g= - 1 + i
(n,“1”));
cla42(n)… sum ((j) , w(“2”,j) * p(n,j) + b (“2”) =g= - 1 + i
(n,“2”));
cla43(n)… sum ((j) , w(“3”,j) * p(n,j) + b (“3”) =g= - 1 + i
(n,“3”));

  • vgood points-error

err11(k)… e (k,“1”) =l= e (k,“2”);
err12(k)… e (k,“1”) =l= e (k,“3”);
err13(k)… e (k,“2”) =l= e (k,“3”);

err14(k)… e (k,“1”) * A =g= e (k,“2”);
err15(k)… e (k,“1”) * A =g= e (k,“3”);
err16(k)… e (k,“2”) * A =g= e (k,“3”);

  • good points-error

err21(l)… f (l,“2”) =l= f (l,“3”);

err22(l)… f (l,“2”) * A =g= f (l,“3”);

  • acc points-error

err31(m)… g (m,“2”) =l= g (m,1);

err32(m)… g (m,“2”) * A =g= g (m,1);

  • unacc points-error

err41(n)… i (n,“3”) =l= i (n,“2”);
err42(n)… i (n,“3”) =l= i (n,“1”);
err43(n)… i (n,“2”) =l= i (n,“1”);

err44(n)… i (n,“3”) * A =g= i (n,“2”);
err45(n)… i (n,“3”) * A =g= i (n,“1”);
err46(n)… i (n,“2”) * A =g= i (n,“1”);


Model svm / all / ;

$CALL GDXXRW.EXE vgood.xls par = r rng=A1:G66
Parameter r (k,j);
$GDXIN vgood.gdx
$LOAD r
$GDXIN;

$CALL GDXXRW.EXE good.xls par = y rng=A1:G70
Parameter y (l,j);
$GDXIN good.gdx
$LOAD y
$GDXIN;

$CALL GDXXRW.EXE acc.xls par = t rng=A1:G385
Parameter t (m,j);
$GDXIN acc.gdx
$LOAD t
$GDXIN;

$CALL GDXXRW.EXE unacc.xls par = p rng=A1:G1211
Parameter p (n,j);
$GDXIN unacc.gdx
$LOAD p
$GDXIN;

Solve svm using nlp minimizing z;

\

On Jun 23, 1:44 pm, “aslidu...@gmail.com” wrote:

I am very new in GAMS, so that would be great if you can tell me what
I am doing wrong with my model.

Scalar A /1000./;

Sets j attribute / 1 + 6 /
k point number in class vgoog / 1 + 65 /
l point number in class good / 1 + 69 /
m point number in class acc / 1 + 384 /
n point number in class unacc / 1 + 1210 /
h hype number / 1, 2, 3 /;

Variables z
w (h,j)
b (h);

Positive variable e (k,h),
f (l,h),
g (m,h),
i (n,h);

Parameters r (k,j), y (l,j), t (m,j), p (n,j);

Equations obj objective function
cla11(k), cla12(k), cla13(k), cla21(l), cla22(l),
cla23(l),
cla31, cla32, cla33, cla41, cla42, cla43
classification constraints
err11(k), err12(k), err13(k), err14(k), err15(k),
err16(k) error constraints
err21(l), err22(l),
err31(m), err32(m),
err41(n), err42(n), err43(n), err44(n), err45(n),
err46(n);

obj… z =e= (0.5 * (sum (h), w (h,“1”))) + (0.5 * (sum (h), w
(h,“2”))) + (0.5 * (sum (h), w (h,“3”))) +
(0.5 * (sum (h), w (h,“4”))) + (0.5 * (sum (h), w (h,“5”))) + (0.5 *
(sum (h), w (h,“6”))) +
(1 *(( count = sum ((k,h), e (k,h))) + ( count = sum ((l,h), f (l,h)))

  • ( count = sum ((m,h), g(m,h))) + ( count = sum ((n,h), i(n,h))))) ;
  • vgood points

cla11(k)… sum ((j) , w(“1”,j) * r(k,j)) + b (“1”) =g= 1 - e (k,“1”);
cla12(k)… sum ((j) , w(“2”,j) * r(k,j)) + b (“2”) =g= 1 - e (k,“2”);
cla13(k)… sum ((j) , w(“3”,j) * r(k,j)) + b (“3”) =g= 1 - e (k,“3”);

  • good points

cla21(l)… sum ((j) , w(“1”,j) * y(l,j) + b (1) =g= - 1 + f (l,“1”));
cla22(l)… sum ((j) , w(“2”,j) * y(l,j) + b (2) =g= 1 - f (l,“2”));
cla23(l)… sum ((j) , w(“3”,j) * y(l,j) + b (3) =g= 1 - f (l,“3”));

*acc points

cla31(m)… sum ((j) , w(“1”,j) * t(m,j) + b (“1”) =g= - 1 + g
(m,“1”));
cla32(m)… sum ((j) , w(“2”,j) * t(m,j) + b (“2”) =g= - 1 + g
(m,“2”));
cla33(m)… sum ((j) , w(“3”,j) * t(m,j) + b (“3”) =g= 1 - g (m,“3”));

  • unacc points

cla41(n)… sum ((j) , w(“1”,j) * p(n,j) + b (“1”) =g= - 1 + i
(n,“1”));
cla42(n)… sum ((j) , w(“2”,j) * p(n,j) + b (“2”) =g= - 1 + i
(n,“2”));
cla43(n)… sum ((j) , w(“3”,j) * p(n,j) + b (“3”) =g= - 1 + i
(n,“3”));

  • vgood points-error

err11(k)… e (k,“1”) =l= e (k,“2”);
err12(k)… e (k,“1”) =l= e (k,“3”);
err13(k)… e (k,“2”) =l= e (k,“3”);

err14(k)… e (k,“1”) * A =g= e (k,“2”);
err15(k)… e (k,“1”) * A =g= e (k,“3”);
err16(k)… e (k,“2”) * A =g= e (k,“3”);

  • good points-error

err21(l)… f (l,“2”) =l= f (l,“3”);

err22(l)… f (l,“2”) * A =g= f (l,“3”);

  • acc points-error

err31(m)… g (m,“2”) =l= g (m,1);

err32(m)… g (m,“2”) * A =g= g (m,1);

  • unacc points-error

err41(n)… i (n,“3”) =l= i (n,“2”);
err42(n)… i (n,“3”) =l= i (n,“1”);
err43(n)… i (n,“2”) =l= i (n,“1”);

err44(n)… i (n,“3”) * A =g= i (n,“2”);
err45(n)… i (n,“3”) * A =g= i (n,“1”);
err46(n)… i (n,“2”) * A =g= i (n,“1”);

Model svm / all / ;

$CALL GDXXRW.EXE vgood.xls par = r rng=A1:G66
Parameter r (k,j);
$GDXIN vgood.gdx
$LOAD r
$GDXIN;

$CALL GDXXRW.EXE good.xls par = y rng=A1:G70
Parameter y (l,j);
$GDXIN good.gdx
$LOAD y
$GDXIN;

$CALL GDXXRW.EXE acc.xls par = t rng=A1:G385
Parameter t (m,j);
$GDXIN acc.gdx
$LOAD t
$GDXIN;

$CALL GDXXRW.EXE unacc.xls par = p rng=A1:G1211
Parameter p (n,j);
$GDXIN unacc.gdx
$LOAD p
$GDXIN;

Solve svm using nlp minimizing z;

asli, what is the problem when solving this model. please specify. If
you send .xls files we can run the it.

\

actually I have ıvercome all of the errors except making the gams
reading excel tables…
“count” was wrong so I have removed it…

best regards

On 24 Haziran, 00:47, fista wrote:

On Jun 23, 1:44 pm, “aslidu...@gmail.com” wrote:

I am very new in GAMS, so that would be great if you can tell me what
I am doing wrong with my model.

Scalar A /1000./;

Sets j attribute / 1 + 6 /
k point number in class vgoog / 1 + 65 /
l point number in class good / 1 + 69 /
m point number in class acc / 1 + 384 /
n point number in class unacc / 1 + 1210 /
h hype number / 1, 2, 3 /;

Variables z
w (h,j)
b (h);

Positive variable e (k,h),
f (l,h),
g (m,h),
i (n,h);

Parameters r (k,j), y (l,j), t (m,j), p (n,j);

Equations obj objective function
cla11(k), cla12(k), cla13(k), cla21(l), cla22(l),
cla23(l),
cla31, cla32, cla33, cla41, cla42, cla43
classification constraints
err11(k), err12(k), err13(k), err14(k), err15(k),
err16(k) error constraints
err21(l), err22(l),
err31(m), err32(m),
err41(n), err42(n), err43(n), err44(n), err45(n),
err46(n);

obj… z =e= (0.5 * (sum (h), w (h,“1”))) + (0.5 * (sum (h), w
(h,“2”))) + (0.5 * (sum (h), w (h,“3”))) +
(0.5 * (sum (h), w (h,“4”))) + (0.5 * (sum (h), w (h,“5”))) + (0.5 *
(sum (h), w (h,“6”))) +
(1 *(( count = sum ((k,h), e (k,h))) + ( count = sum ((l,h), f (l,h)))

  • ( count = sum ((m,h), g(m,h))) + ( count = sum ((n,h), i(n,h))))) ;
  • vgood points

cla11(k)… sum ((j) , w(“1”,j) * r(k,j)) + b (“1”) =g= 1 - e (k,“1”);
cla12(k)… sum ((j) , w(“2”,j) * r(k,j)) + b (“2”) =g= 1 - e (k,“2”);
cla13(k)… sum ((j) , w(“3”,j) * r(k,j)) + b (“3”) =g= 1 - e (k,“3”);

  • good points

cla21(l)… sum ((j) , w(“1”,j) * y(l,j) + b (1) =g= - 1 + f (l,“1”));
cla22(l)… sum ((j) , w(“2”,j) * y(l,j) + b (2) =g= 1 - f (l,“2”));
cla23(l)… sum ((j) , w(“3”,j) * y(l,j) + b (3) =g= 1 - f (l,“3”));

*acc points

cla31(m)… sum ((j) , w(“1”,j) * t(m,j) + b (“1”) =g= - 1 + g
(m,“1”));
cla32(m)… sum ((j) , w(“2”,j) * t(m,j) + b (“2”) =g= - 1 + g
(m,“2”));
cla33(m)… sum ((j) , w(“3”,j) * t(m,j) + b (“3”) =g= 1 - g (m,“3”));

  • unacc points

cla41(n)… sum ((j) , w(“1”,j) * p(n,j) + b (“1”) =g= - 1 + i
(n,“1”));
cla42(n)… sum ((j) , w(“2”,j) * p(n,j) + b (“2”) =g= - 1 + i
(n,“2”));
cla43(n)… sum ((j) , w(“3”,j) * p(n,j) + b (“3”) =g= - 1 + i
(n,“3”));

  • vgood points-error

err11(k)… e (k,“1”) =l= e (k,“2”);
err12(k)… e (k,“1”) =l= e (k,“3”);
err13(k)… e (k,“2”) =l= e (k,“3”);

err14(k)… e (k,“1”) * A =g= e (k,“2”);
err15(k)… e (k,“1”) * A =g= e (k,“3”);
err16(k)… e (k,“2”) * A =g= e (k,“3”);

  • good points-error

err21(l)… f (l,“2”) =l= f (l,“3”);

err22(l)… f (l,“2”) * A =g= f (l,“3”);

  • acc points-error

err31(m)… g (m,“2”) =l= g (m,1);

err32(m)… g (m,“2”) * A =g= g (m,1);

  • unacc points-error

err41(n)… i (n,“3”) =l= i (n,“2”);
err42(n)… i (n,“3”) =l= i (n,“1”);
err43(n)… i (n,“2”) =l= i (n,“1”);

err44(n)… i (n,“3”) * A =g= i (n,“2”);
err45(n)… i (n,“3”) * A =g= i (n,“1”);
err46(n)… i (n,“2”) * A =g= i (n,“1”);

Model svm / all / ;

$CALL GDXXRW.EXE vgood.xls par = r rng=A1:G66
Parameter r (k,j);
$GDXIN vgood.gdx
$LOAD r
$GDXIN;

$CALL GDXXRW.EXE good.xls par = y rng=A1:G70
Parameter y (l,j);
$GDXIN good.gdx
$LOAD y
$GDXIN;

$CALL GDXXRW.EXE acc.xls par = t rng=A1:G385
Parameter t (m,j);
$GDXIN acc.gdx
$LOAD t
$GDXIN;

$CALL GDXXRW.EXE unacc.xls par = p rng=A1:G1211
Parameter p (n,j);
$GDXIN unacc.gdx
$LOAD p
$GDXIN;

Solve svm using nlp minimizing z;

asli, what is the problem when solving this model. please specify. If
you send .xls files we can run the it.

\