neative values problem

I would like to ask if anyone can help me to find out why the equation values are negative and the variable values are positive
the equation name is hydro_output and variable ph

* this code for 6-bus system considering the line constraints  with one hydro unit  and one thermal unit
Set
   t 'time'               / t1*t24   /
   i 'generators indices' / g1*g3   /
   k 'cost segments'      / sg1*sg20 /
   char                   / ch1*ch2  /
   l number of lines  /1*7/
   bus        / 1*6   /
   Hy number of hydro units /hy1/  ;
scalar zeta        /14/   ;
scalar      Q    /1/;

Alias (t,h);
Alias (bus,node);

table datahy (Hy,*) hydropower generation coef.
     h0     alpha       eff
hy1  0.857  0.0001315   8.091;

Table gendata(i,*) 'generator cost characteristics and limits'
       bus Pmax Pmin a       b      c        CostsD  costst RU   RD   SU   SD   UT   DT   uini U0  S0 fuel
   g1  1   220  100  0.0004  13.51  176.95   0       0      55   55   105  108  4    4    1    4   0  1
   g2  2   100  10   0.001   32.63  129.97   0       0      50   50   106  112  2    3    0    0   3  1
   g3  6   20   10   0.005   17.70  137.41   0       0      20   20   43   45   1    1    0    0   1  1;



Table charac(Hy,*)
    lwmin lwmax    Vini    Vfin   Qmin Qmax  Pmin Pmax
hy1 1     10       1000    1000   1    10    10   150;

Table WD(t,*)
        d
   t1   175.19
   t2   165.15
   t3   158.67
   t4   154.73
   t5   155.06
   t6   160.48
   t7   168.39
   t8   177.6
   t9   186.81
   t10  206.96
   t11  228.61
   t12  236.1
   t13  242.18
   t14  243.6
   t15  248.86
   t16  255.79
   t17  256
   t18  246.74
   t19  245.97
   t20  237.35
   t21  236.31
   t22  232.67
   t23  208.93
   t24  195.6;

Table branch(bus,node,*)
       x        limit
1.2    0.17     500
1.4    0.258    500
2.3    0.037    500
2.4    0.197    500
3.6    0.018    500
4.5    0.037    500
5.6    0.14     500 ;

Table BusData(bus,*) percent of hourly load of each bus
    Pd
3   0.2
4   0.40
5   0.40;

Set GB(bus,i)
/
   1.g1
   2.g2
   3.g3
/;
set Bushy(bus,Hy) hydro of each bus
/
   4.hy1/;
* -----------------------------------------------------
* linearizing the quadratic fuel cost FC = a*p*p + b*p + c;
Parameter data(k,i,*);
data(k,i,'DP')       =(gendata(i,"Pmax") - gendata(i,"Pmin"))/card(k);
data(k,i,'Pini')     =(ord(k) - 1)*data(k,i,'DP') + gendata(i,"Pmin");
data(k,i,'Pfin')     = data(k,i,'Pini') + data(k,i,'DP');
data(k,i,'Cini')     = gendata(i,"a")*data(k,i,'Pini')*data(k,i,'Pini')
                     + gendata(i,"b")*data(k,i,'Pini') + gendata(i,"c");
data(k,i,'Cfin')     = gendata(i,"a")*data(k,i,'Pfin')*data(k,i,'Pfin')
                     + gendata(i,"b")*data(k,i,'Pfin') + gendata(i,"c");
data(k,i,'s')        =(data(k,i,'Cfin') - data(k,i,'Cini'))/data(k,i,'DP');
gendata(i,'Mincost') = gendata(i,'a')*gendata(i,"Pmin")*gendata(i,"Pmin")
                     + gendata(i,'b')*gendata(i,"Pmin") + gendata(i,'c');
* -----------------------------------------------------
branch(bus,node,'x')$(branch(bus,node,'x')=0)         =   branch(node,bus,'x');
branch(bus,node,'Limit')$(branch(bus,node,'Limit')=0) =   branch(node,bus,'Limit');
branch(bus,node,'bij')$branch(bus,node,'Limit')       = 100*(1/branch(bus,node,'x'));
branch(bus,node,'z')$branch(bus,node,'Limit')         = branch(bus,node,'x');
branch(node,bus,'z')                                  = branch(bus,node,'z');

Parameter conex(bus,node);
conex(bus,node)$(branch(bus,node,'limit') and branch(node,bus,'limit')) = 1;
conex(bus,node)$(conex(node,bus)) = 1;

* eq. (5.5d) page 122
Parameter unit(i,char);
unit(i,'ch1') = 24;
unit(i,'ch2') =(gendata(i,'UT') - gendata(i,'U0'))*gendata(i,'Uini');
gendata(i,'Lj') = smin(char,unit(i,char));

*eq. (5.6d) page 123
Parameter unit2(i,char);
unit2(i,'ch1')  = 24;
unit2(i,'ch2')  =(gendata(i,'DT') - gendata(i,'S0'))*(1 - gendata(i,'Uini'));
gendata(i,'Fj') = smin(char,unit2(i,char));

Variable costThermal,delta(bus,t),Pij(bus,node,t);
Positive Variable pu(i,t), p(i,t), StC(i,t), SDC(i,t), Pk(i,t,k),lw(Hy,t) , Spill(Hy,t),head(hy,t),ph(hy,t);
Binary Variable u(i,t), y(i,t), z(i,t);
* inequality constraints power limits for thermal and hydro, volume limits and water discharge limits
p.up(i,t)     = gendata(i,"Pmax");
p.lo(i,t)     = 0;
Pk.up(i,t,k)  = data(k,i,'DP');
Pk.lo(i,t,k)  = 0;
p.up(i,t)     = gendata(i,"Pmax");
pu.up(i,h)    = gendata(i,"Pmax");
lw.LO(Hy,t)    = charac(Hy,'lwmin');
lw.UP(Hy,t)    = charac(Hy,'lwmax');


ph.lo(Hy,t)   = charac(Hy,'Pmin');
ph.up(Hy,t)   = charac(Hy,'Pmax');
*Q.LO(Hy,t)    = charac(Hy,'Qmin');
*Q.UP(Hy,t)    = charac(Hy,'Qmax');
Spill.LO(Hy,t)= 0;
Equation
   Uptime1, Uptime2, Uptime3, Dntime1, Dntime2, Dntime3, Ramp1, Ramp2,
   startc, shtdnc, genconst1, Genconst2, Genconst3, Genconst4,const1,balance,waterhead,hydro_output;

*,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
* the hydro water head equation modeled as shahidehpour paper H = H0 + lw(t)
waterhead(Hy,t,bus)$Bushy(bus,Hy) .. head(Hy,t)=e= datahy(Hy,'h0')+lw(hy,t);
*waterhead(t).. head(t)=e= sum(hy,datahy(Hy,'h0')+lw(hy,t));
*+lw(hy,t)
* the hydro output power = Head * eff * Q
hydro_output(Hy,t,bus)$Bushy(bus,Hy)..  Ph(hy,t)=e=Q*datahy(Hy,'eff')*head(hy,t);
*Q*datahy(Hy,'eff')*head(hy,t)
* ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

const1(bus,node,t)$(conex(bus,node))..
   Pij(bus,node,t) =e= branch(bus,node,'bij')*(delta(bus,t) - delta(node,t));

balance(bus,t).. sum(i$GB(bus,i), p(i,t))+sum(Hy$Bushy(bus,Hy),ph(Hy,t))- WD(t,'d')*BusData(bus,'pd') =e= sum(node$conex(node,bus), Pij(bus,node,t));
*+sum(Hy$Bushy(bus,Hy),ph(Hy,t))

Pij.up(bus,node,t)$((conex(bus,node))) = 1*branch(bus,node,'Limit');
Pij.lo(bus,node,t)$((conex(bus,node))) =-1*branch(bus,node,'Limit');

* minimum up time constraints
Uptime1(i)$(gendata(i,"Lj")>0)..
   sum(t$(ord(t)<(gendata(i,"Lj")+1)), 1 - U(i,t)) =e= 0;

Uptime2(i)$(gendata(i,"UT")>1)..
   sum(t$(ord(t)>24-gendata(i,"UT")+1), U(i,t) - y(i,t)) =g= 0;

Uptime3(i,t)$(ord(t)>gendata(i,"Lj") and ord(t)<24-gendata(i,"UT")+2 and not(gendata(i,"Lj")>24-gendata(i,"UT")))..
   sum(h$((ord(h)>ord(t)-1) and (ord(h)<ord(t)+gendata(i,"UT"))), U(i,h)) =g= gendata(i,"UT")*y(i,t);

* minimum down time constraints
Dntime1(i)$(gendata(i,"Fj")>0)..
   sum(t$(ord(t)<(gendata(i,"Fj")+1)), U(i,t)) =e= 0;

Dntime2(i)$(gendata(i,"DT")>1)..
   sum(t$(ord(t)>24-gendata(i,"DT")+1), 1 - U(i,t) - z(i,t)) =g= 0;

Dntime3(i,t)$(ord(t)>gendata(i,"Fj") and ord(t)<24-gendata(i,"DT")+2 and not(gendata(i,"Fj")>24-gendata(i,"DT")))..
   sum(h$((ord(h)>ord(t)-1) and (ord(h)<ord(t)+gendata(i,"DT"))), 1-U(i,h)) =g= gendata(i,"DT")*z(i,t);

* start-up and shut-down constraints
startc(i,t).. StC(i,t) =g= gendata(i,"costst")*y(i,t);
shtdnc(i,t).. SDC(i,t) =g= gendata(i,"CostsD")*z(i,t);

* eq. (5.3d) P lower >= Pmin which PL = Pmin + Pk
genconst1(i,h)..
   p(i,h)    =e= u(i,h)*gendata(i,"Pmin") + sum(k, Pk(i,h,k));

* Eq. (5.4a)
Genconst2(i,h)$(ord(h)>0)..
   U(i,h)    =e= U(i,h-1)$(ord(h)>1) + gendata(i,"Uini")$(ord(h)=1) + y(i,h) - z(i,h);
* Eq. (5.2a)
Genconst3(i,t,k)..
   Pk(i,t,k) =l= U(i,t)*data(k,i,'DP');


* ramp rate constraints
Ramp1(i,t)..             p(i,t+1) - p(i,t) =l= gendata(i,'RU');;
Ramp2(i,t)..             p(i,t-1) - p(i,t) =l= gendata(i,'RD');;


* Objective Function
Genconst4..
   costThermal =e= sum((i,t), StC(i,t) + SDC(i,t))
                +  sum((t,i), u(i,t)*gendata(i,'Mincost')*gendata(i,'fuel') + sum(k, data(k,i,'s')*pk(i,t,k)));
*zeta*sum((Hy,t),Ph(Hy,t)) hydro generation cost
Model UCLP / Uptime1, Uptime2, Uptime3, Dntime1, Dntime2, Dntime3, Ramp1, Ramp2,
   startc, shtdnc, genconst1, Genconst2, Genconst3, Genconst4,const1,balance, waterhead,hydro_output/;
option optCr = 0.0;
*solve UCLP minimizing costThermal using RMINLP;


file emp / '%emp.info%' /;
put emp;

$onput
randvar Q discrete   0.25 1
                     0.25 2
                     0.25 4
                     0.25 6
*                     0.1151555 0
*                     0.3698302 10
*                     0.1023296 20
*                     0.935213  3
*                     0.64016   10
*                     0.426233  5
*                     0.274741  6
*                     0.350147  7
chance hydro_output 0.2

$offput
putclose emp;

Set scen        scenarios / s1*s24 /;
Parameter
    s_Q(scen)
    s_head(scen,hy,t)
;


Set dict / scen .scenario.''
           Q     .randvar    .s_Q
           head    .level      .s_head
/;
solve UCLP min costThermal use emp scenario dict;

display s_Q,s_head;

Hi
THis has to do how Gams treats equations: it puts all stuff on the LHS setting it equal to zero. If you have your variable on the right-hand side, it will have a minus sign in front of it.
Have a look at this dummy model where I put the variable X on the left and right-hand side in the same equation:

variable X, DUMMY;
parameter y /3/;

equation neg, pos, dummyeq;


neg..
   5 + y =E= X;

pos..
    X =E= 5 + y;

dummyeq..
    DUMMY =E= 1;

model testneg /all/;

solve testneg maximzing DUMMY using NLP;

which gives you the following output

                       LOWER     LEVEL     UPPER    MARGINAL

---- EQU neg           -8.000    -8.000    -8.000      EPS       
---- EQU pos            8.000     8.000     8.000      .         
---- EQU dummyeq        1.000     1.000     1.000     1.000   

                       LOWER     LEVEL     UPPER    MARGINAL

---- VAR x              -INF      8.000     +INF       .         
---- VAR dummy          -INF      1.000     +INF       .

Hope this helps.
Cheers
Renger

thank you so much for your reply this was helpful to understand how GAMS deal with the equations