How to make the variable PM(m,time) exogeneous

I need your help to make the variable PM(m,time) exogeneous in order to simulate a shock.
This is my EGC model:


VARIABLES

  • 5.1.1 Volume variables
    C(i,h,time) Consumption of commodity i by type h households
    CG(i,time) Public final consumption of commodity i
    CI(j,time) Total intermediate consumption of industry j
    CMIN(i,h,time) Minimum consumption of commodity i by type h households
    DD(i,time) Domestic demand for commodity i produced locally
    DI(i,j,time) Intermediate consumption of commodity i by industry j
    DIT(i,time) Total intermediate demand for commodity i
    DS(j,i,time) Supply of commodity i by industry j to the domestic market
    EX(j,x,time) Quantity of product x exported by industry j
    EXD(x,time) World demand for exports of product x
    IND(k,j,time) Investment in capital k for industry j
    INV(i,time) Total final demand of commodity i for investment purposes (GFCF)
    INV_PRI(i,time) Final demand of commodity i for private investment purposes
    INV_PUB(i,time) Final demand of commodity i for public investment purposes
    IM(m,time) Quantity of product m imported
    KD(k,j,time) Demand for type k capital by industry j
    KDC(j,time) Industry j demand for composite capital
    KS(k,time) Supply of type k capital
    LD(l,j,time) Demand for type l labor by industry j
    LDC(j,time) Industry j demand for composite labor
    LS(l,time) Supply of type l labor
    MRGN(i,time) Demand for commodity i as a trade or transport margin
    Q(i,time) Quantity demanded of composite commodity i
    VA(j,time) Value added of industry j
    VSTK(i,time) Inventory change of commodity i
    XS(j,i,time) Industry j production of commodity i
    XST(j,time) Total aggregate output of industry j

  • 5.1.2 Price variables
    e(time) Exchange rate (price of foreign currency in local currency)
    IR(time) Interest rate
    P(j,i,time) Basic price of industry j’s production of commodity i
    PC(i,time) Purchaser price of composite comodity i (including all taxes and margins)
    PCI(j,time) Intermediate consumption price index of industry j
    PD(i,time) Price of local product i sold on the domestic market (including all taxes and margins)
    PE(x,time) Price received for exported commodity x (excluding export taxes)
    PE_FOB(x,time) FOB price of exported commodity x (in local currency)
    PIXCON(time) Chained consumer price index
    PIXGDP(time) Chained GDP deflator
    PIXGVT(time) Chained public expenditures price index
    PIXINV_PRI(time) Chained private investment price index
    PIXINV_PUB(time) Chained public investment price index
    PK_PRI(time) Price of new private capital
    PK_PUB(time) Price of new public capital
    PL(i,time) Price of local product i (excluding all taxes on products)
    PM(m,time) Price of imported product m (including all taxes and tariffs)
    PP(j,time) Industry j unit cost including taxes directly related to the use of capital and labor but excluding other taxes on production
    PT(j,time) Basic price of industry j’s output
    PVA(j,time) Price of industry j value added (including taxes on production directly related to the use of capital and labour)
    PWM(m,time) World price of imported product m (expressed in foreign currency)
    PWX(x,time) World price of exported product x (expressed in foreign currency)
    R(k,j,time) Rental rate of type k capital in industry j
    RC(j,time) Rental rate of industry j composite capital
    RTI(k,j,time) Rental rate paid by industry j for type k capital including capital taxes
    U(k,j,time) User cost of type k capital in industry j
    W(l,time) Wage rate of type l labor
    WC(j,time) Wage rate of industry j composite labor
    WTI(l,j,time) Wage rate paid by industry j for type l labor including payroll taxes

  • 5.1.3 Nominal (value) variables
    CAB(time) Current account balance
    CTH(h,time) Consumption budget of type h households
    G(time) Current government expenditures on goods and services
    GDP_BP(time) GDP at basic prices
    GDP_FD(time) GDP at purchasers’ prices from the perspective of final demand
    GDP_IB(time) GDP at market prices (income-based)
    GDP_MP(time) GDP at market prices
    GFCF(time) Gross fixed capital formation
    IT(time) Total investment expenditures
    IT_PRI(time) Total private investment expenditures
    IT_PUB(time) Total public investment expenditures
    SF(f,time) Savings of type f businesses
    SG(time) Government savings
    SH(h,time) Savings of type h households
    SROW(time) Rest-of-the-world savings
    TDF(f,time) Income taxes of type f businesses
    TDFT(time) Total government revenue from business income taxes
    TDH(h,time) Income taxes of type h households
    TDHT(time) Total government revenue from household income taxes
    TIC(i,time) Government revenue from indirect taxes on product i
    TICT(time) Total government receipts of indirect taxes on commodities
    TIK(k,j,time) Government revenue from taxes on type k capital used by industry j
    TIKT(time) Total government revenue from from taxes on capital
    TIM(m,time) Government revenue from import duties on product m
    TIMT(time) Total government revenue from import duties
    TIP(j,time) Government revenue from taxes on industry j production (excluding taxes directly related to the use of capital and labor)
    TIPT(time) Total government revenue from production taxes (excluding taxes directly related to the use of capital and labor)
    TIW(l,j,time) Government revenue from payroll taxes on type l labor in industry j
    TIWT(time) Total government revenue from payroll taxes
    TIX(x,time) Government revenue from export taxes on product x
    TIXT(time) Total government revenue from export taxes
    TPRCTS(time) Total government revenue from taxes on products and imports
    TPRODN(time) Total government revenue from other taxes on production
    TR(ag,agj,time) Transfers from agent agj to agent ag
    YDF(f,time) Disposable income of type f businesses
    YDH(h,time) Disposable income of type h households
    YF(f,time) Total income of type f businesses
    YFK(f,time) Capital income of type f businesses
    YFTR(f,time) Transfer income of type f businesses
    YG(time) Total government income
    YGK(time) Government capital income
    YGTR(time) Government transfer income
    YH(h,time) Total income of type h households
    YHK(h,time) Capital income of type h households
    YHL(h,time) Labor income of type h households
    YHTR(h,time) Transfer income of type h households
    YROW(time) Rest-of-the-world income

  • 5.1.4 Rates and intercepts
    sh0(h,time) Intercept (type h household savings)
    sh1(h) Slope (type h household savings)
    tr0(h,time) Intercept (transfers by type h households to governmentime)
    tr1(h,time) Marginal rate of transfers by type h households to government
    ttdf0(f,time) Intercept (income taxes of type f businesses)
    ttdf1(f,time) Marginal income tax rate of type f businesses
    ttdh0(h,time) Intercept (income taxes of type h households)
    ttdh1(h,time) Marginal income tax rate of type h households
    ttic(i,time) Tax rate on commodity i
    ttik(k,j,time) Tax rate on type k capital used in industry j
    ttim(m,time) Rate of taxes and duties on imports of commodity m
    ttip(j,time) Tax rate on the production of industry j
    ttiw(l,j,time) Tax rate on type l worker compensation in industry j
    ttix(x,time) Export tax rate on exported commodity x
    B_VAa(j,time) Total factor productivity sector j

*===============================================================================
un(l,time) Unemployment rate for labour L
*===============================================================================

  • 5.1.5 Other variables
    LEON(time) Excess supply on the last market
    OMEGA Objective variable
    ;

    \
  • 5.2 Equation definition

EQUATIONS

EQ1(j,time) Value added demand in industry j (Leontief)
EQ2(j,time) Total intermediate consumption demand in industry j (Leontief)
EQ3(j,time) CES between of composite labor and capital
EQ3b(j,time) Value added equals labor for industries with no capital

  • EQ3c(j,time)
    EQ4(j,time) Relative demand for composite labor and capital by industry j(CES)
    EQ5(j,time) CES between labor categories
    EQ6(l,j,time) Demand for type l labor by industry j (CES)
    EQ7(j,time) CES between capital categories
    EQ8(k,j,time) Demand for type k capital by industry j (CES)
    EQ9(i,j,time) Intermediate consumption of commodity i by industry j (Leontief)
    EQ10(h,time) Total income of type h households
    EQ11(h,time) Labor income of type h households
    EQ12(h,time) Capital income of type h households
    EQ13(h,time) Transfer income of type h households
    EQ14(h,time) Disposable income of type h households
    EQ15(h,time) Consumption budget of type h households
    EQ16(h,time) Savings of type h households
    EQ17(f,time) Total income of type f businesses
    EQ18(f,time) Capital income of type f businesses
    EQ19(f,time) Transfer income of type f businesses
    EQ20(f,time) Disposable income of type f businesses
    EQ21(f,time) Savings of type f businesses
    EQ22(time) Total government income
    EQ23(time) Government capital income
    EQ24(time) Total government revenue from household income taxes
    EQ25(time) Total government revenue from business income taxes
    EQ26(time) Total government revenue from other taxes on production
    EQ27(time) Total government receipts of indirect taxes on wages
    EQ28(time) Total government receipts of indirect taxes on capital
    EQ29(time) Total government revenue from production taxes
    EQ30(time) Total government revenue from taxes on products and imports
    EQ31(time) Total government receipts of indirect taxes on commodities
    EQ32(time) Total government revenue from import duties
    EQ33(time) Total government revenue from export taxes
    EQ34(time) Government transfer income
    EQ35(h,time) Income taxes of type h households
    EQ36(f,time) Income taxes of type f businesses
    EQ37(l,j,time) Government revenue from payroll taxes on type l labor in industry j
    EQ38(k,j,time) Government revenue from taxes on type k capital used by industry j
    EQ39(j,time) Government revenue from taxes on industry j production
    EQ40(nm,time) Government revenue from indirect taxes on product nm
    EQ41(m,time) Government revenue from indirect taxes on product m
    EQ42(m,time) Government revenue from import duties on product m
    EQ43(x,time) Government revenue from export taxes on product x
    EQ44(time) Government savings
    EQ45(time) Rest-of-the-world income
    EQ46(time) Rest-of-the-world savings
    EQ47(time) Equivalence between current account balance and ROW savings
    EQ48(agng,h,time) Transfers from household h to agent agng
    EQ49(h,time) Transfers from household h to government
    EQ50(ag,f,time) Transfers from type f businesses to agent ag
    EQ51(agng,time) Public transfers
    EQ52(agd,time) Transfers from abroad
    EQ53(i,h,time) Consumption of commodity i by type h households
    EQ54(time) Gross fixed capital formation
    EQ55(i,time) Final demand of commodity i for private investment purposes
    EQ56(i,time) Final demand of commodity i for public investment purposes
    EQ57(i,time) Total final demand of commodity i for investment purposes
    EQ58(i,time) Public final consumption of commodity i
    *EQ58(time)
    EQ59(i,time) Total intermediate demand for commodity i
    EQ60(i,time) Demand for commodity i as a trade or transport margin
    EQ61(j,time) CET between different commodities produced by industry j
    EQ62(j,i,time) Industry j production of commodity i (CEtime)
    EQ63(j,x,time) CET between exports and local commodity
    EQ64(j,nx,time) Equivalence between XS and DS for non exported commodities
    EQ65(j,x,time) Relative supply of exports and local commodity (CEtime)
    EQ65a(j,x,time) Equivalence between XS and DS for commodities only sold locally
    EQ65b(j,x,time) Equivalence between XS and EX for commodities only exported
    EQ66(x,time) World demand for exports of product x
    EQ67(m,time) CES between imports and local production
    EQ68(nm,time) Equivalence between Q and D for non importable
    EQ69(m,time) Demand for imports (CES)
    EQ70(j,time) Industry j unit cost
    EQ71(j,time) Basic price of industry j’s production of commodity i
    EQ72(j,time) Intermediate consumption price index of industry j
    EQ73(j,time) Price of industry j value added
  • EQ74(j,time) Wage rate of industry j composite labor
    EQ75(l,j,time) Wage rate paid by industry j for type l labor including payroll taxes
  • EQ76(j,time) Rental rate of industry j composite capital
    EQ77(k,j,time) Rental rate paid by industry j for type k capital including capital taxes
  • EQ78(j,i,time) Total producer price
    EQ78a(j,i,time) Total producer price is equal to P if there is only one product
    EQ79(j,x,time) Basic price of industry j’s production of commodity x
    EQ80(j,nx,time) Equivalence between P and PL for non exportable
    EQ81(x,time) Price received for exported commodity x (excluding export taxes)
    EQ82(i,time) Price of local product i sold on the domestic market (including all taxes and margins)
  • EQ83(m,time) Price of imported product m (including all taxes and tariffs)
    EQ84(m,time) Purchaser price of composite comodity m
    EQ85(nm,time) Equivalence between PC and PD for non imported commodities
    EQ86(time) GDP deflator (Fischer index)
    EQ87(time) Consumer price index (Laspeyres)
    EQ88(time) Private investment price index
    EQ89(time) Public investment price index
    EQ90(time) Public expenditures price index
    EQ91(i1,time) Domestic absorbtion
    EQ92(l,time) Labor supply equals labour demand
    EQ93(k,time) Capital supply equals capital demand
    EQ94(time) Total investment equals total savings
    EQ95(time) Private investment equals total investment less public investment
    EQ96(i,time) Supply of domestic production equals demand
    EQ97(x,time) International demand for exports equals supply
    EQ98(time) GDP at basic prices
    EQ99(time) GDP at market prices
    EQ100(time) GDP at market prices (income-based)
    EQ101(time) GDP at purchasers’ prices from the perspective of final demand
  • EQ102(k,j,time) Capital growth
    EQ103(time) Total public investment
    EQ104(time) Equilibrium on the private investment market
    EQ105(time) Aggregate private price of capital
    EQ106(time) Aggregate public price of capital
    EQ107(k,bus,time) Investment demand by private industry
    EQ108a(k,bus,time) User cost of capital (private sectors)
    EQ108b(k,pub,time) User cost of capital (public sectors)
    *===============================================================================
    EQ109(l,time) Unemployment function
    *===============================================================================

WALRAS(time) Walras law verification
OBJ Objective function
;

  • 5.3 Equations

  • 5.3.1 Production

EQ1(j,t)… VA(j,t) =e= v(j)*XST(j,t);

EQ2(j,t)… CI(j,t) =e= io(j)*XST(j,t);

EQ3(j,t)$KDCO(J)…
VA(j,t) =e= B_VA(j)*[beta_VA(j)*LDC(j,t)(-rho_VA(j))+
(1-beta_VA(j))*KDC(j,t)
(-rho_VA(j))]
**(-1/rho_VA(j));

EQ3b(j,t)$(KDCO(J) EQ 0)…
VA(j,t) =e= LDC(j,t);

  • EQ3c(j,t)$(LDCO(J) EQ 0)…
  •             VA(j,t) =e= KDC(j,t);
    

EQ4(j,t)$[LDCO(j)and KDCO(j)]…
LDC(j,t) =e= {[beta_VA(j)/(1-beta_VA(j))]*[RC(j,t)/WC(j,t)]}
**sigma_VA(j)*KDC(j,t);

EQ5(j,t)$LDCO(j)… LDC(j,t) =e= B_LD(j)*SUM[l$LDO(l,j),beta_LD(l,j)*LD(l,j,t)
(-rho_LD(j))](-1/rho_LD(j));

EQ6(l,j,t)$LDO(l,j)…
LD(l,j,t) =e= [beta_LD(l,j)*WC(j,t)/WTI(l,j,t)]sigma_LD(j)
*B_LD(j)
(sigma_LD(j)-1)*LDC(j,t);

EQ7(j,t)$KDCO(j)…
KDC(j,t) =e= B_KD(j)*SUM[k$KDO(k,j),beta_KD(k,j)*KD(k,j,t)
(-rho_KD(j))](-1/rho_KD(j));

EQ8(k,j,t)$KDO(k,j)…
KD(k,j,t) =e= [beta_KD(k,j)*RC(j,t)/RTI(k,j,t)]sigma_KD(j)
*B_KD(j)
(sigma_KD(j)-1)*KDC(j,t);


EQ9(i,j,t)… DI(i,j,t) =e= aij(i,j)*CI(j,t);

  • 5.3.2 Income and savings
  • 5.3.2.1 Households

EQ10(h,t)… YH(h,t) =e= YHL(h,t)+YHK(h,t)+YHTR(h,t);

EQ11(h,t)… YHL(h,t) =e= SUM[l,lambda_WL(h,l)*W(l,t)
*SUM(j$LDO(l,j),LD(l,j,t))];

EQ12(h,t)… YHK(h,t) =e= SUM[k,lambda_RK(h,k)*SUM(j$KDO(k,j),
R(k,j,t)*KD(k,j,t))];

EQ13(h,t)… YHTR(h,t) =e= SUM[ag,TR(h,ag,t)];

EQ14(h,t)… YDH(h,t) =e= YH(h,t)-TDH(h,t)-TR(‘gvt’,h,t);

EQ15(h,t)… CTH(h,t) =e= YDH(h,t)-SH(h,t)-SUM[agng,TR(agng,h,t)];

EQ16(h,t)… SH(h,t) =e= PIXCON(t)**eta*sh0(h,t)+sh1(h)*YDH(h,t);

\

  • 5.3.2.2 Firms

EQ17(f,t)… YF(f,t) =e= YFK(f,t)+YFTR(f,t);

EQ18(f,t)… YFK(f,t) =e= SUM[k,lambda_RK(f,k)*SUM(j$KDO(k,j),R(k,j,t)*KD(k,j,t))];

EQ19(f,t)… YFTR(f,t) =e= SUM[ag,TR(f,ag,t)];

EQ20(f,t)… YDF(f,t) =e= YF(f,t)-TDF(f,t);

EQ21(f,t)… SF(f,t) =e= YDF(f,t)-SUM[ag,TR(ag,f,t)];

  • 5.3.2.3 Government

EQ22(t)… YG(t) =e= YGK(t)+TDHT(t)+TDFT(t)+TPRODN(t)+TPRCTS(t)+YGTR(t);

EQ23(t)… YGK(t) =e= SUM[k,lambda_RK(‘gvt’,k)*SUM(j$KDO(k,j),R(k,j,t)*KD(k,j,t))];

EQ24(t)… TDHT(t) =e= SUM[h,TDH(h,t)];

EQ25(t)… TDFT(t) =e= SUM[f,TDF(f,t)];

EQ26(t)… TPRODN(t) =e= TIWT(t)+TIKT(t)+TIPT(t);

EQ27(t)… TIWT(t) =e= SUM[(l,j)$LDO(l,j),TIW(l,j,t)];

EQ28(t)… TIKT(t) =e= SUM[(k,j)$KDO(k,j),TIK(k,j,t)];

EQ29(t)… TIPT(t) =e= SUM[j,TIP(j,t)];

EQ30(t)… TPRCTS(t) =e= TICT(t)+TIMT(t)+TIXT(t);

EQ31(t)… TICT(t) =e= SUM[i,TIC(i,t)];

EQ32(t)… TIMT(t) =e= SUM[m,TIM(m,t)];

EQ33(t)… TIXT(t) =e= SUM[x,TIX(x,t)];

EQ34(t)… YGTR(t) =e= SUM[agng,TR(‘gvt’,agng,t)];

EQ35(h,t)… TDH(h,t) =e= PIXCON(t)**eta*ttdh0(h,t)+ttdh1(h,t)*YH(h,t);

EQ36(f,t)… TDF(f,t) =e= PIXCON(t)**eta*ttdf0(f,t)+ttdf1(f,t)*YFK(f,t);

EQ37(l,j,t)$LDO(l,j)…
TIW(l,j,t) =e= ttiw(l,j,t)*W(l,t)*LD(l,j,t);

EQ38(k,j,t)$KDO(k,j)…
TIK(k,j,t) =e= ttik(k,j,t)*R(k,j,t)*KD(k,j,t);

EQ39(j,t)… TIP(j,t) =e= ttip(j,t)*PP(j,t)*XST(j,t);

EQ40(nm,t)… TIC(nm,t) =e= ttic(nm,t)*(PL(nm,t)+SUM[i,PC(i,t)*tmrg(i,nm)])
*DD(nm,t);

EQ41(m,t)… TIC(m,t) =e= ttic(m,t)*[(PL(m,t)+SUM[i,PC(i,t)*tmrg(i,m)])
*DD(m,t)+((1+ttim(m,t))*PWM(m,t)*e(t)
+SUM[i,PC(i,t)*tmrg(i,m)])*IM(m,t)];

EQ42(m,t)… TIM(m,t) =e= ttim(m,t)*PWM(m,t)*e(t)*IM(m,t);

EQ43(x,t)… TIX(x,t) =e= ttix(x,t)*(PE(x,t)+SUM[i,PC(i,t)*tmrg_X(i,x)])
*EXD(x,t);

EQ44(t)… SG(t) =e= YG(t)-SUM[agng,TR(agng,‘gvt’,t)]-G(t);

  • 5.3.2.4 Rest of the world

EQ45(t)… YROW(t) =e= e(t)*SUM[m,PWM(m,t)*IM(m,t)]
+SUM[k,lambda_RK(‘row’,k)*SUM(j$KDO(k,j),R(k,j,t)*KD(k,j,t))]
+SUM[agd,TR(‘row’,agd,t)]+SUM[l,lambda_WL(‘row’,l)*W(l,t)
*SUM(j$LDO(l,j),LD(l,j,t))];

EQ46(t)… SROW(t) =e= YROW(t)-SUM[x,PE_FOB(x,t)*EXD(x,t)]-SUM[agd,TR(agd,‘row’,t)];

EQ47(t)… SROW(t) =e= -CAB(t);

  • 5.3.2.5 Transfers

EQ48(agng,h,t)… TR(agng,h,t) =e= lambda_TR(agng,h)*YDH(h,t);

EQ49(h,t)… TR(‘gvt’,h,t) =e= PIXCON(t)**eta*tr0(h,t)+tr1(h,t)*YH(h,t);

EQ50(ag,f,t)… TR(ag,f,t) =e= lambda_TR(ag,f)*YDF(f,t);

EQ51(agng,t)… TR(agng,‘gvt’,t) =e= PIXCON(t)**eta*TRO(agng,‘gvt’)*pop(t);

EQ52(agd,t)… TR(agd,‘row’,t) =e= PIXCON(t)**eta*TRO(agd,‘row’)*pop(t);

\

  • 5.3.3 Demand

EQ53(i,h,t)… C(i,h,t)*PC(i,t) =e= CMIN(i,h,t)PC(i,t)+gamma_LES(i,h){CTH(h,t)-
SUM[ij,CMIN(ij,h,t)*PC(ij,t)]};

EQ54(t)… GFCF(t) =e= IT(t)-SUM[i,PC(i,t)*VSTK(i,t)];

EQ55(i,t)… INV_PRI(i,t)*PC(i,t) =e= gamma_INVPRI(i)*IT_PRI(t);

EQ56(i,t)… INV_PUB(i,t)*PC(i,t) =e= gamma_INVPUB(i)*IT_PUB(t);

EQ57(i,t)… INV(i,t) =e= INV_PRI(i,t)+INV_PUB(i,t);

EQ58(i,t)… CG(i,t)*PC(i,t) =e= gamma_GVT(i)*G(t);
*Transformer cette équation en
*EQ58(t)… G(t)=e= SUM[i, CG(i,t)*PC(i,t)];

EQ59(i,t)… DIT(i,t) =e= SUM[j,DI(i,j,t)];

EQ60(i,t)… MRGN(i,t) =e= SUM[ij,tmrg(i,ij)*DD(ij,t)]+
SUM[m,tmrg(i,m)*IM(m,t)]+
SUM[x,tmrg_X(i,x)*EXD(x,t)];

\

  • 5.3.4 International trade

EQ61(j,t)… XST(j,t) =e= B_XT(j)*SUM[i$XSO(j,i),beta_XT(j,i)*XS(j,i,t)
rho_XT(j)](1/rho_XT(j));

EQ62(j,i,t)$(XSO(j,i) and (XSO(j,i) ne XSTO(j)))…
XS(j,i,t) =e= XST(j,t)/B_XT(j)**(1+sigma_XT(j))*
{P(j,i,t)/[beta_XT(j,i)*PT(j,t)]}**sigma_XT(j);

EQ63(j,x,t)$(EXO(j,x) and DSO(j,x))…
XS(j,x,t) =e= B_X(j,x)*[beta_X(j,x)*EX(j,x,t)**rho_X(j,x)
+(1-beta_X(j,x))*DS(j,x,t)**rho_X(j,x)]
**(1/rho_X(j,x));

EQ64(j,nx,t)$XSO(j,nx)…
XS(j,nx,t) =e= DS(j,nx,t);

EQ65(j,x,t)$(EXO(j,x) and DSO(j,x))…
EX(j,x,t) =e= {[(1-beta_X(j,x))/beta_X(j,x)]*[PE(x,t)/PL(x,t)]}
**sigma_X(j,x)*DS(j,x,t);

EQ65a(j,x,t)$((EXO(j,x) eq 0) and DSO(j,x))…
XS(j,x,t) =e= DS(j,x,t);

EQ65b(j,x,t)$(EXO(j,x) and (DSO(j,x) eq 0))…
XS(j,x,t) =e= EX(j,x,t);

EQ66(x,t)… EXD(x,t) =e= EXDO(x)pop(t)[e(t)*PWX(x,t)/PE_fob(x,t)]
**sigma_XD(x);

EQ67(m,t)… Q(m,t) =e= B_M(m)*[beta_M(m)*IM(m,t)(-rho_M(M))+(1-beta_M(m))
*DD(m,t)
(-rho_M(M))]**(-1/rho_M(M));

EQ68(nm,t)… Q(nm,t) =e= DD(nm,t);

EQ69(m,t)… IM(m,t) =e= {[beta_M(m)/(1-beta_M(m))]*[PD(m,t)/PM(m,t)]}
**sigma_M(m)*DD(m,t);

  • 5.3.5 Prices

EQ70(j,t)… PP(j,t)*XST(j,t) =e= PVA(j,t)*VA(j,t)+PCI(j,t)*CI(j,t);

EQ71(j,t)… PT(j,t) =e= (1+ttip(j,t))*PP(j,t);

EQ72(j,t)… PCI(j,t)*CI(j,t) =e= SUM[i,PC(i,t)*DI(i,j,t)];

EQ73(j,t)… PVA(j,t)*VA(j,t) =e= WC(j,t)*LDC(j,t)+RC(j,t)*KDC(j,t)$KDCO(j);

  • Given the way equation 6 is written, equation 74 is redundant
  • EQ74(j,t)… WC(j,t)*LDC(j,t) =e= SUM[l$LDO(l,j),WTI(l,j,t)*LD(l,j,t)];

EQ75(l,j,t)$LDO(l,j)…
WTI(l,j,t) =e= W(l,t)*(1+ttiw(l,j,t));

  • Given the way equation 8 is written, equation 76 is redundant
  • EQ76(j,t)… RC(j,t)*KDC(j,t) =e= SUM[k$KDO(k,j),RTI(k,j,t)*KD(k,j,t)];

EQ77(k,j,t)$KDO(k,j)…
RTI(k,j,t) =e= R(k,j,t)*(1+ttik(k,j,t));

  • Given the way equation 62 is written, equation 78 is redundant if
  • a sector produces more than one commodity
  • EQ78(j,t)… PT(j,t)*XST(j,t) =e= SUM[i,P(j,i,t)*XS(j,i,t)];

EQ78a(j,i,t)$(XSO(j,i) eq XSTO(j))…
P(j,i,t) =e= PT(j,t);

EQ79(j,x,t)$XSO(j,x)…
P(j,x,t)*XS(j,x,t) =e= PE(x,t)*EX(j,x,t)$EXO(j,x)
+PL(x,t)*DS(j,x,t)$DSO(j,x);

EQ80(j,nx,t)$XSO(j,nx)…
P(j,nx,t) =e= PL(nx,t);

EQ81(x,t)… PE_FOB(x,t) =e= (PE(x,t)+SUM[i,PC(i,t)tmrg_X(i,x)])(1+ttix(x,t));

EQ82(i,t)… PD(i,t) =e= (1+ttic(i,t))*(PL(i,t)+SUM[ij,PC(ij,t)*tmrg(ij,i)]);

  • EQ83(m,t)… PM(m,t) =e= (1+ttic(m,t))*{(1+ttim(m,t))*e(t)*PWM(m,t)
  •                        +SUM[i,PC(i,t)*tmrg(i,m)]};
    



EQ84(m,t)… PC(m,t)*Q(m,t) =e= PM(m,t)*IM(m,t)+PD(m,t)*DD(m,t);

EQ85(nm,t)… PC(nm,t) =e= PD(nm,t);

EQ86(t)… PIXGDP(t) =e= {SUM[j,PVA(j,t)*VAO(j)]/SUM[j,PVAO(j)VAO(j)]
SUM[j,PVA(j,t)*VA(j,t)]/SUM[j,PVAO(j)*VA(j,t)]}**0.5;

EQ87(t)… PIXCON(t) =e= SUM[i,PC(i,t)*SUM[h,CO(i,h)]]
/SUM[i,PCO(i)*SUM[h,CO(i,h)]];

EQ88(t)… PIXINV_PRI(t) =e= PROD[i$gamma_INVPRI(i),(PC(i,t)/PCO(i))
**gamma_INVPRI(i)];

EQ89(t)… PIXINV_PUB(t) =e= PROD[i$gamma_INVPUB(i),(PC(i,t)/PCO(i))
**gamma_INVPUB(i)];

EQ90(t)… PIXGVT(t) =e= PROD[i$gamma_GVT(i),(PC(i,t)/PCO(i))**gamma_GVT(i)];

  • 5.3.6 Equilibrium

EQ91(i1,t)… Q(i1,t) =e= SUM[h,C(i1,h,t)]+CG(i1,t)+INV(i1,t)+VSTK(i1,t)+
DIT(i1,t)+MRGN(i1,t);

*===============================================================================

  • EQ92(l,t)… LS(l,t) =e= SUM[j$LDO(l,j),LD(l,j,t)];
    EQ92(l,t)… LS(l,t) =e= SUM[j$LDO(l,j),LD(l,j,t)]/(1-un(l,t));
    *===============================================================================

EQ93(k,t)… KS(k,t) =e= SUM[j$KDO(k,j),KD(k,j,t)];

EQ94(t)… IT(t) =e= SUM[h,SH(h,t)]+SUM[f,SF(f,t)]+SG(t)+SROW(t);

EQ95(t)… IT_PRI(t) =e= IT(t)-IT_PUB(t)-SUM[i,PC(i,t)*VSTK(i,t)];

EQ96(i,t)… SUM[j$DSO(j,i),DS(j,i,t)] =e= DD(i,t);

EQ97(x,t)… SUM[j$EXO(j,x),EX(j,x,t)] =e= EXD(x,t);

\

  • 5.3.7 Gross domestic product

EQ98(t)… GDP_BP(t) =e= SUM[j,PVA(j,t)*VA(j,t)]+TIPT(t);

EQ99(t)… GDP_MP(t) =e= GDP_BP(t)+TPRCTS(t);

EQ100(t)… GDP_IB(t) =e= SUM[(l,j)$LDO(l,j),W(l,t)*LD(l,j,t)]
+SUM[(k,j)$KDO(k,j),R(k,j,t)*KD(k,j,t)]
+TPRODN(t)+TPRCTS(t);

EQ101(t)… GDP_FD(t) =e= SUM[i,PC(i,t)*(SUM[h,C(i,h,t)]+CG(i,t)+INV(i,t)
+VSTK(i,t))]+SUM[x,PE_FOB(x,t)*EXD(x,t)]
-SUM[m,PWM(m,t)*e(t)*IM(m,t)];

  • 5.3.8 Dynamic equations

  • EQ102(k,j,t+1)$KDO(k,j)…

  •             KD(k,j,t+1) =e= KD(k,j,t)*(1-delta(k,j))+IND(k,j,t);
    

EQ103(t)… IT_PUB(t) =e= PK_PUB(t)*SUM[(k,pub)$KDO(k,pub),IND(k,pub,t)];

EQ104(t)… IT_PRI(t) =e= PK_PRI(t)*SUM[(k,bus)$KDO(k,bus),IND(k,bus,t)];

EQ105(t)… PK_PRI(t) =e= 1/A_K_BUS*PROD[i$gamma_INVPRI(i),(PC(i,t)/gamma_INVPRI(i))
**gamma_INVPRI(i)];

EQ106(t)… PK_PUB(t) =e= 1/A_K_PUBPROD[i$gamma_INVPUB(i),(PC(i,t)/gamma_INVPUB(i))
**gamma_INVPUB(i)];
EQ107(k,bus,t)$KDO(k,bus)…
IND(k,bus,t) =e= phi(k,bus)
[R(k,bus,t)/U(k,bus,t)]
**sigma_INV(k,bus)*KD(k,bus,t);

EQ108a(k,bus,t)$KDO(k,bus)…
U(k,bus,t) =e= PK_PRI(t)*(delta(k,bus)+ir(t));

EQ108b(k,pub,t)$KDO(k,pub)…
U(k,pub,t) =e= PK_PUB(t)*(delta(k,pub)+ir(t));

===============================================================================
EQ109(l,t)… un(l,t) =e= A_un(l)
((w(l,t)/PIXCON(t)))**sig_un(l);
*===============================================================================

  • 5.3.9 Other

WALRAS(t)… LEON(t) =e= Q(‘CEREA’,t)-SUM[h,C(‘CEREA’,h,t)]-CG(‘CEREA’,t)
-INV(‘CEREA’,t)-VSTK(‘CEREA’,t)-DIT(‘CEREA’,t)
-MRGN(‘CEREA’,t);

OBJ… OMEGA =e= 1;

\

  • 6 Resolution
    OPTION NLP = conopt4
    MODEL PEPBASE STANDARD DYNAMIC MODEL /ALL/;
    PEPBASE.HOLDFIXED=1;

  • 6.1 BAU

  • First the model must be solved for the BAU. This is specially important

  • if the BAU does not follow a balanced growth path in which all prices remain

  • constant and other variables grow at the same constant rate as the popula-

  • tion. If the BAU is not a balanced growth scenario, then, except for the

  • first period, variables cannot be initialised at their exact BAU values

  • without solving the model. So GAMS computes the values of each variable

  • for each period through this first numerical resolution.


    LOOP[time,
    T(time) = YES;

  • 6.1.1 Variable initialisation
    C.l(i,h,time) = CO(i,h)pop(time);
    CAB.l(time) = CABO
    pop(time);
    CG.l(i,time) = CGO(i)*pop(time);
    CI.l(j,time) = CIO(j)*pop(time);
    CMIN.l(i,h,time) = CMINO(i,h)*pop(time);
    CTH.l(h,time) = CTHO(h)*pop(time);
    DD.l(i,time) = DDO(i)*pop(time);
    DI.l(i,j,time) = DIO(i,j)*pop(time);
    DIT.l(i,time) = DITO(i)*pop(time);
    DS.l(j,i,time) = DSO(j,i)pop(time);
    e.l(time) = eO;
    EX.l(j,x,time) = EXO(j,x)pop(time);
    EXD.l(x,time) = EXDO(x)pop(time);
    G.l(time) = GO
    pop(time);
    ===============================================================================
    -------Hypothese de taux de croissance regulier du PIB-------------------------
    GDP_BP.l(time) = GDP_BPO
    pop(time);
    GDP_FD.l(time) = GDP_FDO
    pop(time);
    GDP_IB.l(time) = GDP_IBO
    pop(time);
    GDP_MP.l(time) = GDP_MPO
    pop(time);

*--------------Hypothese de taux de croissance observe et prevu du PIB----------

  • GDP_BP.l(time+1) = GDP_BPO*(1+gr(time));
  • GDP_FD.l(time+1) = GDP_FDO*(1+gr(time));
  • GDP_IB.l(time+1) = GDP_IBO*(1+gr(time));
  • GDP_MP.l(time+1) = GDP_MPO*(1+gr(time));
    *===============================================================================

GFCF.l(time) = GFCFO*pop(time);
IM.l(m,time) = IMO(m)*pop(time);
IND.l(k,j,time) = INDO(k,j)*pop(time);
INV.l(i,time) = INVO(i)pop(time);
INV_PRI.l(i,time) = INV_PRIO(i)pop(time);
INV_PUB.l(i,time) = INV_PUBO(i)pop(time);
IR.l(time) = IRO;
IT.l(time) = ITO
pop(time);
IT_PRI.l(time) = IT_PRIO
pop(time);
IT_PUB.l(time) = IT_PUBO
pop(time);
KDC.l(j,time) = KDCO(j)*pop(time);
KS.l(k,time) = KSO(k)*pop(time);
LD.l(l,j,time) = LDO(l,j)*pop(time);
LD.LO(l,j,time) = 0.00000000000000000001;
LDC.l(j,time) = LDCO(j)*pop(time);
LDC.LO(j,time) = 0.00000000000000000001;
LS.l(l,time) = LSO(l)*pop(time);
MRGN.l(i,time) = MRGNO(i)pop(time);
P.l(j,i,time) = PO(j,i);
PC.l(i,time) = PCO(i);
PCI.l(j,time) = PCIO(j);
PD.l(i,time) = PDO(i);
PE.l(x,time) = PEO(x);
PE_FOB.l(x,time) = PE_FOBO(x);
PIXCON.l(time) = PIXCONO;
PIXGDP.l(time) = PIXGDPO;
PIXGVT.l(time) = PIXGVTO;
PIXINV_PRI.l(time) = PIXINV_PRIO;
PIXINV_PUB.l(time) = PIXINV_PUBO;
PK_PRI.l(time) = PK_PRIO;
PK_PUB.l(time) = PK_PUBO;
PL.l(i,time) = PLO(i);
PM.l(m,time) = PMO(m);
PP.l(j,time) = PPO(j);
PT.l(j,time) = PTO(j);
PVA.l(j,time) = PVAO(j);
PWM.l(m,time) = PWMO(m);
PWX.l(x,time) = PWXO(x);
Q.l(i,time) = QO(i)pop(time);
R.l(k,j,time) = RO(k,j);
RC.l(j,time) = RCO(j);
RTI.l(k,j,time) = RTIO(k,j);
SF.l(f,time) = SFO(f)pop(time);
SG.l(time) = SGO
pop(time);
SH.l(h,time) = SHO(h)pop(time);
SROW.l(time) = SROWO
pop(time);
TDF.l(f,time) = TDFO(f)pop(time);
TDFT.l(time) = TDFTO
pop(time);
TDH.l(h,time) = TDHO(h)pop(time);
TDHT.l(time) = TDHTO
pop(time);
TIC.l(i,time) = TICO(i)pop(time);
TICT.l(time) = TICTO
pop(time);
TIK.l(k,j,time) = TIKO(k,j)pop(time);
TIKT.l(time) = TIKTO
pop(time);
TIM.l(m,time) = TIMO(m)pop(time);
TIMT.l(time) = TIMTO
pop(time);
TIP.l(j,time) = TIPO(j)pop(time);
TIPT.l(time) = TIPTO
pop(time);
TIW.l(l,j,time) = TIWO(l,j)pop(time);
TIWT.l(time) = TIWTO
pop(time);
TIX.l(x,time) = TIXO(x)pop(time);
TIXT.l(time) = TIXTO
pop(time);
TPRODN.l(time) = TPRODNO
pop(time);
TPRCTS.l(time) = TPRCTSO
pop(time);
TR.l(ag,agj,time) = TRO(ag,agj)*pop(time);
TR.l(agd,‘row’,time)
= TRO(agd,‘row’)PIXCONO**etapop(time);
TR.l(agng,‘gvt’,time)
= TRO(agng,‘gvt’)PIXCONO**etapop(time);
VA.l(j,time) = VAO(j)*pop(time);
VSTK.l(i,time) = VSTKO(i)*pop(time);
WC.l(j,time) = WCO(j);
W.l(l,time) = WO(l);
WTI.l(l,j,time) = WTIO(l,j);
U.l(k,j,time) = UO(k,j);
XS.l(j,i,time) = XSO(j,i)*pop(time);
XST.l(j,time) = XSTO(j)*pop(time);
YDF.l(f,time) = YDFO(f)*pop(time);
YDH.l(h,time) = YDHO(h)*pop(time);
YF.l(f,time) = YFO(f)pop(time);
YFK.l(f,time) = YFKO(f)pop(time);
YFTR.l(f,time) = YFTRO(f)pop(time);
YG.l(time) = YGO
pop(time);
YGK.l(time) = YGKO
pop(time);
YGTR.l(time) = YGTRO
pop(time);
YH.l(h,time) = YHO(h)*pop(time);
YHK.l(h,time) = YHKO(h)*pop(time);
YHL.l(h,time) = YHLO(h)*pop(time);
YHTR.l(h,time) = YHTRO(h)pop(time);
YROW.l(time) = YROWO
pop(time);
OMEGA.l = 1;

un.l(l,time) = uno(l);

  • 6.1.2 Closures

  • The numeraire is the nominal exchange rate
    e.fx(time) = 1;
    CAB.fx(time) = CABO*pop(time);
    CMIN.fx(i,h,time) = CMINO(i,h)pop(time);
    G.fx(time) = GO
    pop(time);
    *CG.fx(i,time) = CGO(i)pop(time);
    IND.fx(k,pub,time)KDO(k,pub) = INDO(k,pub)*pop(time); KD.fx(k,j,time)(KDO(k,j) and (ord(time) eq 1))
    = KDO(k,j);
    KD.fx(k,j,time)$(ord(time) gt 1)
    = KD.l(k,j,time-1)
    (1-delta(k,j))+IND.l(k,j,time-1);
    LS.fx(l,time) = LSO(l)*pop(time);
    PWM.fx(m,time) = PWMO(m);
    PWX.fx(x,time) = PWXO(x);
    VSTK.fx(i,time) = VSTKO(i)*pop(time);

  • 6.1.3 Rates and intercepts
    sh0.fx(h,time) = sh0O(h)*pop(time);
    sh1.fx(h) = sh1O(h);
    tr0.fx(h,time) = tr0O(h)*pop(time);
    tr1.fx(h,time) = tr1O(h);
    ttdf0.fx(f,time) = ttdf0O(f)*pop(time);
    ttdf1.fx(f,time) = ttdf1O(f);
    ttdh0.fx(h,time) = ttdh0O(h)*pop(time);
    ttdh1.fx(h,time) = ttdh1O(h);
    ttic.fx(i,time) = tticO(i);
    ttik.fx(k,j,time) = ttikO(k,j);
    ttim.fx(m,time) = ttimO(m);
    ttip.fx(j,time) = ttipO(j);
    ttiw.fx(l,j,time) = ttiwO(l,j);
    ttix.fx(x,time) = ttixO(x);

B_VAa.fx(j,time) = B_VA(j);

  • 6.1.4 Resolution
    OPTION NLP=CONOPT4;
    OPTION LIMROW=1;

SOLVE PEPBASE USING CNS;
T(time) = NO;
];
*$Exit
$include RESULTS_BAU19