Hi all. I’m pretty new to GAMS and I started using it. 'm working with a MINLP model and the following message appears to me: ** Optimal solution. There are no superbasic variables.
I checked a lot of times the model and I can´t find the key. I’d really appreciate with any insight or idea about this situation and possible way to solve. Thanks a lot!
here is my code.
set i buses /137/
LP(i);
set k hours per day /124/
H(k);
alias (i,j) ;
alias (k,m) ;
set DG(i) DG units at remot buses /11, 15, 25, 35/
Scalar SBase System base in MVA / 20 /;
Scalar VBase System base voltage in kV /11/;
set t /low, off-peak, peak/;
alias (t,s);
set Type Customer Type resi_com_SUser_ Gov-ins/1*4/;
Set Head1 /Line,Length/;
scalar Rkm resistance per km /.8315/;
scalar Xkm reactance per km /.7874/;
*-----Line data here--------------
Table LineData(i,j,Head1)
Line Length
*--------F1------------------------------
1.2 1 .75
2.3 2 .6
2.4 3 .8
2.5 4 .75
5.6 5 .8
5.7 6 .6
5.8 7 .75
8.9 8 .8
8.10 9 .75
8.11 10 .6
11.12 11 .8
*--------F2------------------------------
1.13 12 .75
13.14 13 .8
13.15 14 .6
15.16 15 .8
*--------F3------------------------------
1.17 16 .75
17.18 17 .6
17.19 18 .8
19.20 19 .75
19.21 20 .8
19.22 21 .6
22.23 22 .75
22.24 23 .8
22.25 24 .75
25.26 25 .6
*--------F4-----------------------------
1.27 26 .8
27.28 27 .75
27.29 28 .6
27.30 29 .75
30.31 30 .6
30.32 31 .8
30.33 32 .75
33.34 33 .8
33.35 34 .6
35.36 35 .75
35.37 36 .8 ;
Set Head DG Data heads /Pmin, Pmax, Qmin, Qmax, A, B, C, StCst, SdCst/;
-
-----DG units data here--------------
TABLE DistGen(i, Head) generator data
Pmin Pmax Qmin Qmax A B C StCst SdCst
11 .001 .1 0 .35 .004 55 15 50 10
15 .001 .05 0 .2 .003 60 60 25 10
25 .001 .2 0 .25 .005 45 50 50 10
35 .001 .05 0 .5 .003 05 65 50 10;
Set Head2 /LP, Type, Ave, Peak, Num/;
*-----Active power demand data here--------------;
table Pdem0(i, Head2)
LP Type Ave Peak Num
3 1 1 .535 .8668 210
4 2 1 .535 .8668 210
6 3 1 .535 .8668 210
7 4 4 .566 .9167 1
9 5 4 .566 .9167 1
10 6 2 .454 .75 10
12 7 2 .454 .75 10
14 8 3 1 1.6279 1
16 9 3 1.15 1.8721 1
18 10 1 .535 .8668 210
20 11 1 .535 .8668 210
21 12 1 .450 .7291 200
23 13 4 .566 .9167 1
24 14 4 .566 .9167 1
26 15 2 .454 .75 10
28 16 2 .454 .75 10
29 17 1 .450 .7291 200
31 18 1 .450 .7291 200
32 19 1 .450 .7291 200
34 20 4 .566 .9167 1
36 21 4 .566 .9167 1
37 22 2 .454 .75 10;
table E(s,t) Self and cross elasticities.
low off-peak peak
low -.1 .01 .012
off-peak .01 -.1 .016
peak .012 .016 -.1;
parameter LC(t) Load Curve
/
low .71
off-peak .82
peak .94/;
*--------PerUnit power demand-------------------
parameter Pdem1(i);
Pdem1(i)= Pdem0(i,“peak”)/SBase;
*---------Load Profile--------------------------
parameter TPdem(k), pri(k),CILa,Lcurve(k);
LCurve(k) $(ord(k) = 10 and ord(k) = 13 and ord(k) = 19)=.82;
TPdem(k)= sum(i, Pdem1(i)*LCurve(k));
*—Day-Ahead hourly price
parameter Pri(k)
/
1 40.840, 2 38.800, 3 36.740, 4 34.820, 5 38.180, 6 41.220
7 47.880, 8 44.780, 9 43.760, 10 50.600, 11 51.660, 12 54.480
13 64.460, 14 73.400, 15 76.960, 16 80.420, 17 76.100, 18 64.700
19 57.740, 20 55.660, 21 52.240, 22 46.340, 23 40.940, 24 44.700
/;
Variables
GridP(k)
ILCont(k)
ILsch(k)
Payment
U1(dg,k)
V1(dg,k)
W(dg,k)
U2(k);
Binary variable U1, V1, U2, W;
POSITIVE VARIABLES
ILsch(k)
PG(dg,k) ;
Equations
Obj1
Eq1a(k)
Eq1b(k)
Eq2b(k)
Eq1c(dg,k)
Eq2c(dg,k)
Eq1d(k)
Eq2d(k)
Eq3e
Eq4e
Eq5e;
Obj1… Payment=e=Sum(k,
Pri(k)*GridP(k)*SBase
- CILa(k)ILCont(k)(1000*SBase)
+(Sum(dg,DistGen(dg,“StCst”)*U1(dg,k) + DistGen(dg,“SdCst”)*V1(dg,k)
+DistGen(dg,“C”)*W(dg,k) + DistGen(dg,“B”)*PG(dg,k)*SBase - DistGen(dg,“A”)*power((PG(dg,k)*SBase ),2))));
*Demand-Supply Balance Constraint
Eq1a(k)… Sum(dg, PG(dg,k))+ GridP(k)+ ILsch(k)=e= TPdem(k);
*Grid Purchase Constraints
scalar PMa /.6/;
scalar PMi /.1/;
Eq1b(k)… GridP(k) =l= PMa;
Eq2b(k)… GridP(k) =g= PMi;
*DG constraints
Eq1c(dg,k)… PG(dg,k) =l= DistGen(dg,“PMax”)*W(dg,k);
Eq2c(dg,k)… PG(dg,k) =g= DistGen(dg,“Pmin”)W(dg,k);
Limit on IL Contract
parameter CILa;
CILa(K)=(pri(k)-1)(ord(k)>=20) + 0(ord(k)<20) ;
Scalar IntLim /0.05/;
Eq1d(k)… ILCont(k) =l= IntLimTPdem(k) U2(k);
Eq2d(k)… ILsch(k) =l= ILCont(k);
*Coordination Constraints
Eq3e(dg,k)(ord(k) gt 1).. W(dg,k) - W(dg,k-1) =l= U1(dg,k); Eq4e(dg,k)(ord(k) gt 1)… W(dg,k-1) - W(dg,k) =l= V1(dg,k);
Eq5e(dg,k)$(ord(k) gt 1)… U1(dg,k) - V1(dg,k) =e= W(dg,k) - W(dg,k-1);
Model DAOM /all/ ;
SOLVE DAOM using minlP Minimizing Payment;
display gridp.l, PG.l, W.l;
–
To unsubscribe from this group and stop receiving emails from it, send an email to gamsworld+unsubscribe@googlegroups.com.
To post to this group, send email to gamsworld@googlegroups.com.
Visit this group at http://groups.google.com/group/gamsworld.
For more options, visit https://groups.google.com/groups/opt_out.