Set covering and packing formulations of graph
coloring: algorithms and first polyhedral results

P. Hansen*
M. Labbéf
D. Schindl?

September 29, 2005

Abstract

We consider two (0,1)-linear programming formulations of the graph (vertex-)
coloring problem, in which variables are associated to stable sets of the input
graph. The first one is a set covering formulation, where the set of vertices has
to be covered by a minimum number of stable sets. The second is a set packing
formulation, in which constraints express that two stable sets cannot have a
common vertex, and large stable sets are preferred in the objective function.
We identify facets with small coefficients for the polytopes associated with
both formulations. We show by computational experiments that both formu-
lations are about equally efficient when used in a branch-and-price algorithm.
Next we propose some preprocessing, and show that it can substantially speed
up the algorithm, if it is applied at each node of the enumeration tree. Finally
we describe a cutting plane procedure for the set covering formulation, which
often reduces the size of the enumeration tree.

Keywords: Graph coloring, stable sets, facets, branch-cut-and-price algorithm

1 Introduction

The graph (vertex-)coloring problem (GC) consists, given a graph G = (V, E), in
assigning a color to each vertex of GG such that any two adjacent vertices receive
different colors, and the total number of colors used is minimized. The minimum

*HEC Montreal, GERAD et Méthodes quantitatives de gestion, Pierre.Hansen@gerad.ca
tUniversité Libre de Bruxelles, Dép. d’Informatique, mlabbe@ulb.ac.be
HEC Montreal, GERAD, david.schindl@a3.epfl.ch

number of colors necessary to color G is called the chromatic number of G and de-
noted by x(G). Problem GC is one of the most important in graph theory, it presents
many applications (e.g. in timetabling, scheduling and frequency assignment) and
has been extensively studied, see e.g. [Sch03].

For problem GC, several authors proposed exact algorithms, based on integer
programming formulations. Mehrotra and Trick ([MT96]) use a formulation of the
problem using variables associated to maximal stable sets of the graph. Since such
a formulation may contain a huge number of variables, Mehrotra and Trick use
a column generation approach and special branching rules. In [CMaZ02], Coll,
Marenco, Méndez Diaz and Zabala consider a formulation with a polynomial number
of variables corresponding to color assignments to vertices. The linear relaxation
of this formulation is extremely weak but the authors identify powerful families of
valid inequalities which allow to reduce significantly the integrality gap.

In Section 2, we present three (a covering, a packing and a partitioning) integer
linear programming formulations for the graph coloring problem. They all involve
an exponential number of variables. The bounds obtained by their respective linear
relaxations are shown to be equivalent in Section 3. In Section 4, we focus on the set
covering formulation and all facets among the inequalities of the initial formulation
are characterized. We also provide conditions related to less trivial inequalities. In
Section 5, we study the set packing formulation, essentially by considering facets in-
duced by maximal cliques in the associated conflict graph. Similarly as in Section 4,
we again characterize all facets among the inequalities of the initial formulation. We
then extend this result to a larger class, i.e. facets associated with some but not all
maximal cliques. In Section 6, we present computational results on branch-and-price
algorithms obtained with those formulations. A preprocessing and a cutting plane
procedure for the covering formulation are described and tested. Brief conclusions
are stated in Section 7.

2 Notations and formulations

Let G = (V, E) be a graph. Two vertices v and w of V such that (v,w) € E are
said to be adjacent. For v € V, the neighborhood of v is the set N(v) = {w € V :
(v,w) € E}. The neighborhood of a subset V! C V' is N(V') = Upey N(v) — V.
For v € V, the anti-neighborhood of v is the set AN (v) =V —{N(v)Uv}. The anti-
neighborhood of a subset V! C V' is AN(V’) = Nyey» AN(v). The complementary
graph G = (V, E) of G is the graph in which two vertices are adjacent if and only
if they are not in G. For V' C V| the subgraph of G induced by V' is G[V'] =
(VI,EN (V! x V')). A stable set of G is a set of vertices S C V, such that no two
vertices of S are adjacent. The maximum size of a stable set in G is called the
stability number of G and denoted by a(G). A clique is a set of vertices C' C V,

such that each vertex in C' is adjacent to each other vertex in C'. It can also be seen
as a stable set in G. The maximum size of a clique in G is called the cliqgue number
of G and is denoted by w(G).

Let ¥ be an upper bound on the chromatic number of G. A standard integer
linear programming formulation for the graph coloring problem is given below, where
y; = 1 if color j is used and z,; = 1 if vertex v receives color j. Constraints (6)
impose that each vertex is in exactly one stable set, constraints (3) force two adjacent
vertices to receive different colors, and the objective value is equal to the number of
colors used. This is the formulation used in [CMaZ02].

X
min > Y (1)
7j=1
st. Say=1 YoeV (GC(St)) 2)
j=1
xvj_'_ijgyj V[U,W]EE,je{l,,,.,Y} (3)
T,y €4{0,1} VoeV, je{l,...,x} (4)

We then consider the following set partitioning formulation.

min > xg (5)
Ses

s.t. > zg=1 YweV (GC(Part)) (6)
SeS:wes

xg €{0,1} VSeS (7)

in which § is the set of all stable sets of GG, and g = 1 if the stable set .S corresponds
to a color class. Denote by Sy = {S € §: |S| > 2}.

One can replace variables xg such that |S| = [{v}] = 1, by 1 — Yyges,ves) Ts-
This substitution guarantees the satisfaction of constraints (6), but the fact that
1 — > ses,Ts = Tgyy = 0V v brings the inequalities Y gcs, 5 < 1. After having
transformed the objective function accordingly, we get the following formulation.

max Y (|S]—1)zs (8)
SES,
s.t. > xs<1l YweV (GC(Pack)) (9)
SeSywes
zs€{0,1} VS eES, (10)

Another formulation can be obtained by observing that partitioning V is not
necessary, but only covering it with a minimum number of stable sets suffices to
solve the graph coloring problem. Moreover, in a covering, a stable set which is not
inclusionwise maximal can be replaced by such a maximal one. Hence we only need

to take into account variables corresponding to maximal stable sets. Let S,,.. be
those sets, we then have the following set covering formulation, which is the one
used in [MT96].

min S xg (11)
Sesmaw

s.t. > xs>1 YweV (GC(Cov)) (12)
SE€SmazVES

25 € 10,1} VS € Span (13)

3 Comparison of the linear relaxations

As mentioned in the introduction, the linear relaxation GC!(St) of the standard for-
mulation provides a very bad lower bound on x(G). Indeed, consider the fractional
solution given by z;; = %,yj = 1forall ¢if j = 1,2, and z;; = y; = 0 for all ¢ if
j > 3. This solution satisfies constraints (3) whatever is the instance graph, so the
optimal value z*/(St) of GC'(St) is at most 2 (it is 1 if the graph has no edges).
Since x(G) may be arbitrarily large, this lower bound is useless.

Consider the linear relaxations GC'(Part), GC'(Pack) and GC'(Cov) of the
above formulations, denote by z*(Part), *(Pack) and x*(Cov) their optimal solu-
tions and 2*(Part), 2*'(Pack) and 2*'(Cov) their optimal values, respectively. Since
GC(Part) is obtained by applying Dantzig-Wolfe decomposition to constraints (3)
and (4) (see e.g. [Sch04]), it immediately follows that 2*(St) < z*!(Part). The fol-
lowing proposition shows that the bounds obtained by the three linear relaxations
GCY Part), GC'(Pack) and GC'(Cov) are in fact of the same quality.

Proposition 1 z*(Cov) = z*(Part) = |V| — 2*'(Pack).

Proof. A development similar to the one above leading from GC(Part) to GC(Pack)
permits to prove that problems GC!(Pack) and GC'(Part) are equivalent. Further-
more, we have

M (Part) = ay(Part) = > ai(Part) + (V]| = Y |S|zs(Part))
Ses Ses Ses

=|V| — SZ;(|S| — Dag(Part) = |V| — Sz; (|S| — D% (Pack) = |V| — 2*(Pack).

Hence it remains only to show that 2*(Cov) = z*'(Part).

From a feasible solution x(Part) of GC!'(Part), one can always construct a fea-
sible solution of same value z(Cov) of GC'(Cov) by applying the following steps:

1. set z5(Cov) =0VS € Spas;

2. for each S € S such that xg(Part) > 0, choose a set S’ € S,,4, containing S,
and set zg(Cov) = zg(Cov) + xg(Part).

Since the objective function coefficients are all equal to one in both formulations,
this proves that 2*(Cov) < 2*(Part).

Now given a solution z(Cov) of GC'(Cov), apply the following steps to obtain a
solution x(Part) of GC'(Part), with objective value equal to the value of x(Cov).

1. set xg(Part) = x5(Cov) if S € S0, and xg(Part) =01if S € (S — Spaa);
2. for each v € V define a(v) = X zg(Part);

S3v

3. for each S € S,,4: such that xg(Cov) > 0, do:

(a) partition S into classes Sy, ...,S,, where vy and vy belong to the same
class S; if a(vy) = a(ve) =: a(S;), and order them by decreasing order of
a(S;);

(b) set Siemp =S

(c) for i =1 to ¢, do:

i. set 6, = min(a(S;) — 1, zg,,,, (Part));
i. set xg,,,., (Part) = xg,,,. (Part) — 0,;

—e

iii. set Siemp = Stemp — Si;
iv. set xg,,,,, (Part) = 0,.

At the beginning of the algorithm, x(Part) has the same value as z(Cov), but
may not be a feasible solution of GC!(Part), since one or more inequalities of
GC'(Cov) may not be satisfied with equality. Each time z(Part) is modified (steps
3(c)ii and 3(c)iv) the values of a(.S;) change for some i, and the specific choices for
0, ensure that they finally all become equal to one. Moreover, the objective value
> ges Ts(Part) at the beginning of each loop in 3c is the same as at the end of it.
Hence the algorithm produces a feasible solution z(Part) of GC'(Part) with same
value as 2(Cov), which shows that z*/(Cov) > z*(Part) and permits to conclude.
[

The optimal solutions z*(Cov), z*(Part) and z*(Pack) correspond to colorings
of G with fractional colors, such that each pair of adjacent vertices are colored with
disjoint sets of colors, and such that the sum of the fractions of colors corresponding
to a given vertex is at least 1. The values z*(Cov) = z*(Part) = |V| — 2*(Pack)
give a lower bound of good quality on x(G), better known as the fractional chromatic
number of G and denoted by x(G). See [Sch97] for some of its properties.

4 Polyhedral results for the set covering formula-
tion

Let Cov(Spaz, V) be the set of feasible solutions to GC(Cov); i.e. Cov(Spaz, V) =
{z € {0,1}!Smazl ; (12)} and denote its convex hull by Conv(Cov(Spaz, V)). The
dimension of Conv(Cov(Spaz, V') 18 |Smaz| if and only if S, \{S} is a cover of V/,
for any S € S, This amounts to say that each vertex v of V' belongs to at least
two maximal stable sets of GG, which is achieved if and only if for all v € V|, V\N(v)
is not a stable set. In the opposite case, we can remove S = V\N(v) from G and
solve GC on the reduced graph induced by N(v). The optimal coloring of G would
then be obtained by adding S with a new color to the optimal coloring obtained for
N(v). We will thus assume in this section that each vertex belongs to at least two
maximal stable sets, and hence that Conv(Cov(Saz, V)) is full-dimensional.

In [CS89, Sas89], the useful concept of bipartite incidence graph is defined to
study set covering polytopes. In the special case of the graph coloring problem, the
bipartite incidence graph B(Syuz, V, F) is the bipartite graph with node sets S,,qz,
V and with edge set E = {(S,v) € Spazx X V : v € S}. A subset S’ of S0 such
that each node of V' has at least one neighbor in S” will be called a cover of V. It
is easy to see that the covers of V' are exactly the solutions of Cov(S,4z, V). The
cardinality of a minimum cover of V' is called the covering number of V' and will be
denoted by B(V). To avoid confusion, we will denote by Ng(v) the neighborhood
(set of vertices which are adjacent to v) of a vertex v if we refer to the graph G and
Ng(v) if we refer to the bipartite incidence graph B.

The following result was proved in [CS89] for the general set covering polytope.
For the ease of exposition, we present it in terms of the bipartite graph B(S,4z, V, F)
associated to Cov(Spaz, V).

Proposition 2 Let 8' C S0, and V! = {v € V : Ng(v) C S'}. Assume that
Ssest ws > B defines a facet of Conv(Cov(S,VY)). Then it defines a facet of
Conv(Cov(Spaz, V) if and only if for every S & St,

BVIUVE) =BV
where V2 ={v € V : Ng(v) NS # 0 and Np(v)\S' = {S}}.

Notice that since each vertex of G belongs to at least two maximal stable sets,
{v eV :Ng(v)={S}} = 0. In the next section this result is used to give a necessary
and sufficient condition for an inequality of the form Y gcor 25 > 1 (S" C Spaa) to
define a facet.

4.1 All facets with right hand side equal to 1

Consider the set covering formulation GC(Cov) of the graph coloring problem and
Cov(Spaz, V) its set of feasible solutions. For a pair v € V and w € V of vertices,
we say that v dominates w if Ng(w) C Ng(v) (it follows that v and w are not
adjacent). Notice that in this case, we have Ng(v) C Np(w). We will denote by S,
the set of all maximal (inclusionwise) stable sets containing v.

Proposition 3 Let v be a vertex of V. Then the inequality

21’521

SESy
defines a facet of Conv(Cov(Spax, V') if and only if v is not dominated.

Proof. Let S be a maximal stable set not containing vertex v and consider the
bipartite incidence subgraph B'(S, U {S},V’, E’) where V' = {w € V : Np(w) C
S, U{S}} and {S,v} € E'iff v € §'. Since v is not dominated then for every
w € V' either Np/(w) = Np/(v) =S, or S € Np/(w) (i.e. Ng:(w) cannot be strictly
included in Np/(v)). We can thus partition V' into two subsets: V! = {w € V' :
Np(w) = Np(v)} and V? = {w € V' : S € Ng/(w)}. Note that v € V! and
Np(w)NS' £ OV w € V2, see Figure 1.

Clearly, Y ges, Ts > 1 defines a facet of Conv(Cov(S,,V?')). In order to apply
Proposition 2, we have to show that (V' U V?) = 3(V?!) = 1. Consider v' € V1
and w € V2. Since Np/(w) NS, # 0, v' and w occur in a common stable set and
hence are not adjacent in G. Moreover, w cannot be adjacent to another vertex w’
of V2, since both w’ and w belong to the stable set S. Hence V2 is stable, and by
a similar argument, so is V!. Thus V! U V2 is stable and must be contained in a
stable set from S,. So f(V!UV?) =1. m

Figure 1: The bipartite incidence graph of the proof of Proposition 3.

A dominated vertex v in G is irrelevant for yx(G), since in any optimal coloring,
it can have the same color as the dominating vertex. So one can remove all dom-
inated vertices from G without decreasing x(G). If this preprocessing is done, all
inequalities (12) are facet defining.

Moreover, if no vertex of GG is dominated, those facets, which will be called vertez
cover facets, are the only one defining inequalities with right hand side equal to 1.
Indeed, consider such an inequality Y gce xs > 1 with &’ # S,,v € V. To have a
chance to define a facet, &’ cannot have any set S, = {S € S : S 3 v} as a subset,
since the inequality Y gcs, ©s > 1 itself defines a facet. But then the solution

1 otherwise

. /
e — { 0 ifSes
covers all vertices of V', but violates the inequality > gcs g > 1.

4.2 Facet defining inequalities with right hand side larger
than 1

A graph G is called k-critical if, for any v € V| x(G[V\{v}]) = x(G) =1 =k — 1.
We will say that G is x — critical if it is x(G) — critical. We use another auxiliary
graph G* = (Spaz, E*), where E* = {(5,5") : B(V\(SNS’)) = (V) —1}. Notice
that S(V\(SNY’)) is either 5(V') or (V) —1. This last case occurs only when SNS’
intersects all y-critical subgraphs of G. We first provide another set of inequalities
with all coefficients equal to one. In [Sas89], graph G* is used to give a sufficient
condition for a class of such inequalities to be facet defining. We translate it here
in our terms.

Lemma 1 If Conv(Cov(Spaz, V') is full dimensional and if G* is connected, the
inequality Y ges, . Ts > x(G) is facet defining.

This lemma can be extended to the following necessary and sufficient condition.

Proposition 4 Let G be a x-critical graph. The inequality

> zs > x(G)

SESmax

is facet defining if and only if the complementary graph G is connected.

Proof. Necessity. Denote by V' a subset of V such that G[V'] is not connected to
G[V\V']. Since no stable set in G can intersect both V' and V\V’, we can partition
Sinaz 10 two parts 8’ and S, \S’. Then both inequalities SE;S xs > x(G[V']) and
e /
> x5 > x(G[V\V']) are valid, and their sum gives > zg > x(G), which
SESmaz\S' SESman
is thus not facet defining.

Sufficiency. The complementary graph G is connected iff there is a path from any
vertex v to w in G, or iff there is a sequence of cliques Cy,Cy, ..., in G, such

8

that C;NCiyy # 0 foralli € {1,...,k— 1}, v € C; and w € Cj,. This is equivalent
to saying that there is a sequence of stable sets in G with the same property, which
holds also if we restrict to maximal stable sets. Moreover, since G is critical and from
the above remark, for any S1, Sy € Spae such that S; NSy # 0, x(G[V\(S1NSy)]) =
X(G) — 1. So E* = {(51,52) : S1 NSy # (0} and G* is connected. We can now apply
Lemma 1, which permits to conclude. =

Facets with right hand side larger than 1 may be obtained using Chvatal’s well-
known procedure (see [Chv73]):

1. Sum a subset @' C @ of inequalities from the initial set (12);
2. divide the resulting inequality by a positive number k;
3. round up all coefficients and the right hand side to the nearest integer.

Chvétal called the elementary closure of a set of inequalities () the set of inequalities
which can be obtained from () with one iteration of this procedure.

Applying this for any V' C V and k > 0 gives a valid inequality for Conv(Cov(Snaz, V))-
But specific choices of V/ and k may lead to inequalities which are not dominated by
the initial ones and even facets of Conv(Cov(Spae, V')). We will see in the following
that inequalities belonging to the elementary closure of the set (12) have a natural
interpretation.

Example. Consider the graph G of Figure 2 with chromatic number 4 and clique

sber .
egé!o

Figure 2: A graph G such that x(G) =4 and w(G) = 3.

The set of all maximal stable sets of G is:
Smaz = {{1,5},{1,6},{1,7,8},{2,3,4},{2,3,8},{2,6},{3,4,7},{3,7,8},{4,5} }.
The inequality

x(1,7,8) +x(2,3,4) + x(2,3,8) + x(3,4,7) + 22(3,7,8) > 2

9

defines a facet of Conv(Cov(Syaz, V') which can be obtained by applying the round-
ing procedure to the set of inequalities

x(2,34) +x(2,3,8) +x(34,7) +x3,78 > 1
x(1,7,8) +x(34,7) +x(3,78) > 1
x(1,7,8) +x(2,3,8) 4 x(3,7.8) > 1

and k = 2. Alternatively it can be obtained by the following argument: the set
{3,7,8} must be covered by the set {3,7,8} or at least two sets among {1,7,8},
{2,3,4}, {2,3,8} and {3,4,7}.

Such an interpretation holds for any inequality obtained with one iteration of
Chvatal’s rounding procedure with set V' C V' and number k:
V|

¥ ases > | (14

SGSmaz

with ag = [@], V S € Snae- In the following, such an inequality will be
denoted by Chv(V’,k). The next proposition gives a necessary condition for such an

inequality to define a facet of Conv(Cov(Spaz, V)).

Proposition 5 If Cho(V' k) defines a facet of Conv(Cov(Spaz, V)), then [%W >
w(GV')).

Proof. Assume PL,;‘] < w(G[V'), let C C V' be a maximum clique in G[V'], and let
v e Candw € C, v # w. Notice that v and w are adjacent since they both belong to
the same clique C'. Consider S, = {S € Se:|S 3 v} and S, = {S € Spaz|S 2 w}.
A set that would be simultaneously in S, and S,, would contain vertices v and w,
which is impossible since it must be stable, hence S, N'S,, = (). This holds for any
pair of vertices from C', and

D 2ws=) w5 =|Cl=w(GV) (15)

veC S3v SNC#D

is the sum of the cover inequalities of the vertices in c¢. Hence it is valid. But
since all coefficients in it are 1, since ag > 1V S such that S N C # 0 and since

w(G[V']) > [";—/'1, inequality (15) dominates inequality Chv(V' k). =

In our example, this condition is fulfilled: [L;S}W =2>1=w(G[{3,7,8}]).

10

5 Polyhedral results on the set packing formula-
tion

We focus now on formulation GC(Pack) and denote by Pack(S,, V') its set of fea-
sible solutions, i.e., Pack(Sy,V) = {x € {0,1}/Sme=l . (9)} . Recall that we work
with Ss, the set of stable sets of size at least 2. With this formulation, all solu-
tions consisting in only one stable set from S, satisfy all constraints. There are as
many such solutions as there are variables, and since they are affinely independent,
Conv(Pack(S,,V)) is full-dimensional.

The conflict graph associated to the set Sy of stable sets is G = (S,, {(5,5") :
SNS"#0}). A clique in G is then a set of stable sets of GG, having pairwise non
empty intersections. We will say that a clique is maximal if it is maximal under
inclusion, i.e., for a maximal clique C C Sy, and for each S in S;\C there is a S" € C
such that SNS” = (). The following result is proved in [Pad73] for general set packing
polyhedra, and we adapt it here to GC'(Pack).

Proposition 6 [Pad73] An inequality of the form

szgl

sec
defines a facet of Conv(Pack(Ss,V')) if and only if C is a mazimal clique in G.

In the next section, we define and characterize a class of such inequalities which
correspond to maximal cliques in G.

5.1 Majority set cliques

Given a set of vertices X C V', we call majority set clique the subset Cx = {S €
S |SNX| > @} Obviously, Cx is a clique. In what follows, we characterize
which of them with |X| = 1 are maximal, then those with |X| = 2 and finally those
with | X| > 3.

We call single vertex cliques the majority set cliques Cx with | X| = 1. Letv € V.
We assume that |AN(v)| > 0, since otherwise v is contained in no stable set of S,
and the single vertex clique Cy,y is empty.

Proposition 7 Assume AN (v) = {w}. Then Cyy) is a mazimal clique of G (in fact
the isolated vertex {v,w}of G) if and only if N(w) = N(v) = V\{v,w}.

Proof. Notice first that {v,w} € Cf,; and N(w) C N(v), otherwise |AN(v)| > 1.
If N(w) = N(v), then any set B C V', with B # {v,w} and |B| > 2 intersecting
{v,w} must contain at least one edge of G and hence B ¢ Ss, so Cy,y is maximal. If
N(w) C N(v), then {z,w} € S, for any v € AN(w) — {v} and Cy,} is not maximal.
u

11

Proposition 8 Assume |AN(v)| > 2. Then Cygyy is a mazimal clique in G if and
only if AN(v) is not a stable set in G.

Proof. If AN(v) is a stable set in G, then AN (v) € S; and AN(v)NS £ 0DV S €
Civ}, i-e., Cyy is not maximal. If there is an edge (x,y) in the subgraph induced
by AN(v), then any stable set S ¢ Ci,) contains at most one vertex in the set
{z,y}, and hence cannot intersect both {v,z} € Cgy and {v,y} € Cpy. Thus Cy,y
is maximal. m

In the case where AN (v) is a stable set (possibly of size one), the unique maximal
clique containing Cy,y is Cq,y U{S € S : AN(v) C S}.

As mentioned in last section, if a graph G contains two non-adjacent vertices x
and y such that N(z) C N(y) (y dominates z), can be removed from G without
changing x(G). In particular, if all such vertices are removed, no anti-neighborhood
of a vertex can be a stable set. Consequently, in the resulting graph, all inequalities
(9) define facets.

Assume X = {v,w}, and that v and w are not adjacent, since otherwise Cx is
empty. Since # = 1.5, we have Cx = {S € Sy : {v,w} € S}. This implies
that Cx C Cyyy and Cx C Cyyy. We have as a consequence of Proposition 7, that if
N(v) = N(w) = V\{v,w}, then Cx = Cy,} = C{y is a maximal single vertex clique.
This is the only case where Cx is maximal. Indeed, if at least one vertex in X, say
v, has another non-neighbor, say u, then {u,v} € Cry, and Cx C Cyyy.

Assume now that | X| > 3. The next proposition gives a necessary and sufficient
condition for Cx to define a maximal clique in G.

Proposition 9 Let X € V be a set of at least 3 vertices. Then the majority set
clique Cx of G is mazimal if and only if

1. |X] is odd and
2. X 1is stable.

Proof. If X satisfies 1 and 2, then for any S € So — Cx we have [X N S| < ‘X|2_1.

Hence | X\S| > # > 2 which means that X'\S € Cx, while SN (X\S) = 0. Thus
Cx is maximal.

If X does not contain a stable set of cardinality larger than or equal to % then
Cx is empty (and hence not maximal).
Otherwise, let S be any stable set of Cx. If X is not stable, let u and v be two
vertices in X such that (u,v) € E. Let X’ = X\{u,v}. Since S is stable, it contains
either u or v, or none of them. Hence,

X -1 (X +1

X' > X|—-1>
[SNX[>[SNX|-12> 5 5

| X|+1
L
2

12

which means that S € Cx.. Consequently, Cx C Cx/. Further, let S’ € Cx s.t.
1S = @ Removing any vertex w from S’ yields a stable set belonging to Cx,
but not to Cx, hence Cx C Cxs and Cx is not maximal.

So X is a stable set and assume it has even cardinality. Let v be any vertex of X

and S be a stable set of Cx. Hence,

X -1 X\
2 2

1

1SN X\{o})] >SN X[1> |X|T+1_

which is not integer. So we also have |[S N (X\{v})| > W, which means that
S € Cx\(vy and Cx C Cx\(v}. Further, let S” be a stable set of Cx with cardinality
% + 1 such that v € S and w € §’. Then S\{w} belongs to Cx\,} but not to Cx
which implies that Cx C Cx\{v} and Cx is not maximal. m

It follows that if one wants to find all majority set cliques which are not in the

initial formulation, one needs only to consider the stable sets S with |S| > 3 and
odd.

5.2 Other maximal cliques

There are lots of other maximal cliques in G. Here are some illustrating examples.

Proposition 10 Let X be a stable set of odd size at least 5, and S C X such that
S| =X A= {Te&: TNX =8} and B={T €S8 :TNX=X\S}. Then
(Cx\\A) U B is a mazimal clique in G.

Proof. Since Cx is a clique, so is Cx\.A. Further we have clearly that each stable
set in Cx \A intersects X\S. So (Cx\.A)UB is a clique. To prove that it is maximal,
consider a stable set S’ & (Cx\A) U B. If S’ € A, then obviously S’ N (X\S) = 0,
while (X\S) € B (notice that |X\S| > 2). Assume now that S’ ¢ (Cx U B),
and consider the stable set (X\S’), which has empty intersection with S’. Since
1SN X| < ‘X|2_1, | X\S| > @ which means that (X\S’) € Cx. Further, since
S" ¢ B, (X\9) ¢ A. So (X\S’) € Cx\\A, which permits to conclude. m

Starting from a clique as defined in Proposition 10, one can do the same replace-
ment with another set S’ of size @ instead of S, provided that (X —S")N(X—S9) #

. For doing the same a third time with S” such that |S”| = WTH, one should
ensure that (X —S”")N (X —85) # 0 and that (X — S") N (X — 5') # 0, and
so on. Noticing that there are many possible choices for S, then for S’ and so
on, can give an idea of the huge number of maximal cliques in G. Furthermore,
there are other cliques which are neither majority set cliques, nor obtainable with
the above construction. For instance in the graph displayed in Figure 3, the set

13

Figure 3: A graph with a clique facet which is not derived from a majority set clique.

C =1{{2,3,4},{2,6,7},{3,5,7},{4,5,6}} is a maximal clique of G which does not
belong to any previous case. The corresponding facet defining inequality is:

2(2,3,4) + (2,6,7) + 2(3,5,7) + 2(4,5,6) < 1

Notice that this graph has no dominated vertex, so all single vertex cliques induce
facets.

6 Exact graph coloring algorithms

The lower bound [x¢(G)] on x(G) can be used in a branch-and-bound algorithm
for graph coloring. This is done in [MT96] with formulation GC(Cov), where com-
putational results show that the algorithm obtained is about the best actual exact
coloring algorithm. The branching rule they choose is such that at each node of
the enumeration tree, two subproblems are created, and they are of the same kind
as the original one, i.e., graph coloring problems. Consequently, the algorithm can
be called recursively. At the root node, an upper bound on x(G) is obtained by
a coloring obtained heuristically. We used a neighborhood search heuristic, with
penalty evaporation to avoid cycling [BI601]. This upper bound is updated each
time a better coloring is found. For computing the lower bound, since the number
of variables is very large, the use of column generation is unavoidable. The pricing
problem is in this case a maximum weight stable set problem, where the graph is
the instance graph, and the weight of each vertex is given by the dual value of the
corresponding covering constraint at the optimal solution of the restricted linear
program. Following Mehrotra and Trick’s paper, we implemented a greedy heuristic
which tries several times to find an improving column (or stable set of weight larger
than 1). If at least one improving column is found, it is added to the restricted lin-
ear program which is optimized again with the simplex algorithm. If not, an exact
algorithm is run, which will either find an improving column, or prove that no such
column exists, in which case an optimal solution of the whole linear program has
been reached.

14

The polyhedral results presented above could not directly be used to improve our
algorithms. The characterization of facets with right hand side equal to 1 (Propo-
sition 3) shows that GC(Cov) is a good formulation since all its constraints induce
facets. However, this result does not allow to derive new cutting planes. For Propo-
sition 4, although the property of having a connected complement can be easily
checked, we do not know if the instance graph G is y—critical and computing the
corresponding inequality involves the knowledge of x(G), so this result is of no prac-
tical use here. Concerning formulation GC(Pack), we tried to add some majority
set clique facets to the linear relaxations for small graphs, but the results were some-
what disappointing. We thus decided not to implement separation procedures for
this kind of facets in the branch-and-price algorithm. We also inserted a procedure
permitting to detect violated inequalities corresponding to odd holes in the conflict
graph of stable sets. This can be done in polynomial time by solving |V'| shortest
path problems, as is described in [GLS93]. Computational experiments showed that
computation time tended to increase, while only a slight reduction in the number of
visited nodes was sometimes observed. We did not use lifting procedures to obtain
facets from the odd hole inequalities, and we are not able to say if it would provide
better results.

Another class of valid inequalities express the fact
that the number of stable sets intersecting a node in a
subset V' of V must be at least x(G[V"’]). Of course, if
X(G[V']) = w(G[V"]), this inequality will never violate
a solution of GC'(Cov). So we tried to systematically
add such violated inequalities for subsets V', where
G[V'] is a hole on five vertices. This did neither give
us promising results, as we could obtain only small
(< 0.1) improvements in the optimal solution value,
even after adding several thousands of such inequal-
ities, which substantially slowed down the LP opti-
mization. The most persistent difficulty we encoun-
tered when adding cutting planfas can be referr'ed to as Figure 4: Graph G.
the problem symmetry: many times, when an inequal-
ity violating the current fractional solution is added,
there is another such solution satisfying it, with the same value. Figure 4 displays
a small graph G where such a situation happens. All maximal stable sets of this
graph are of the form {i,% mod 5 + 1,7 + 5}, {i,7 mod 5+ 1,7 mod 5 + 6} or
{i,imod 546, (i + 3) mod 5+ 6}, for i = 1...,5. An optimal solution, with value
¥ to GC'(Cov) is given by

2
x(2,6,8) = 3 and

15

2(1,5,6) = 2(1,5,10) = 2(1,7,10) = 2(2,3,7) = 2(3,4,9)
1
=2(3,7,9) = x(4,5,9) = (4,8, 10) = 3

This solution does not satisfy the ineqality requiring that at least 3 stable sets have
to cover the hole induced by the 5 vertices {1, 3,4,5,7}. However, the symmetrical
solution)
x(3,7,9) = 3 and
x(1,2,7) =x(1,2,6) = z(1,5,10) = x(2,6,8) = x(3, 4, 8)
— 2(4,5,10) = 2(4,8, 10) = 2(5,6,9) %

satisfies it, but violates the inequality corresponding to vertices {1,2,4,5,8}. Of
course, adding these inequalities is not necessary in this example, since we still have
[x7(G)] = x(G), but on larger graphs with larger gaps, this situation occurs even
more frequently. Such symmetry problems are also encountered in [BHV00] for the
origin-destination multicommodity flow problem, where the authors manage to effi-
ciently combat it by adding some knapsack inequalities to the formulation. For our
problem, it appears more difficult to find good classes of such symmetry-breaking
inequalities. By computer-aided enumeration of the facets for small graphs, we have
obtained the complete description of the corresponding polytopes Conv(GC(Cov))
and Conv(GC(Pack)). Unfortunately, the largest (interesting) graph for which
Conv(GC(Cov)) (which has lower dimension than Conv(GC(Pack))) could be com-
puted in reasonable time was Myciel_3 (see Section 6.1.4), and has only 11 vertices.
For this graph, the dimension of Conv(GC(Cov)) is 16, since Myciel_3 has 16 max-
imal stable sets, and there are 226 facets. Furthermore, since inequalities describing
holes on 5 vertices rarley appeared on those polytope descriptions, they are far from
giving a good description of Conv(GC(Cov)). In [NP91], the authors get the same
conclusions after testing a similar approach for edge coloring, which is equivalent to
graph coloring restricted to line graphs. They further restrict attention to 3-regular
graphs, and observe that edge inequalities and odd cycle inequalities (a cycle is a
hole of the same size in the line graph) together are still not close to describing the
convex hull of integer solutions.

We nevertheless obtained interesting results, as presented in the following. First,
we show by numerical experiments that using formulation GC(Pack) for computing
xf(G) performs essentially as well as using GC(Cov). Then we propose a simple
preprocessing consisting in deleting vertices which are easily proven to be redundant,
and show that it may somewhat improve the algorithm performance, if applied at
each node of the branch-and-bound tree. Finally, we provide a cutting plane gener-
ation procedure for formulation GC(Cov) and show that it often permits to make
the enumeration tree substantially smaller, with limited loss in overall computation
time.

16

The tests have been run on machines with a processor of 2 GHz, and the sizes
of graphs have been chosen so that the algorithm finishes most times within an
hour (the time limit). Linear programs are solved using the CPLEX 9.0 callable
library from a program written in C++. All times are given in seconds. We would
like to point out that taking into account the power ratio of our computers and
those used in [MT96], it seems (although it is difficult to evaluate exactly) that our
implementation is somewhat slower. This may partially be due to the way of solving
the pricing problem exactly; we use here a basic branch-and-bound algorithm, and
more effort has been invested for this sake in [MT96]. Anyway, the results we show
next aim to give comparisons between variants of an algorithm, whose common parts
are implemented in the same way.

6.1 Instance description

Let us first present the set of instance graphs which we used for running our tests.

6.1.1 Random graphs

The graphs of type rand n p are randomly generated on n vertices, such that for
each pair of vertices, there is an edge connecting them with probability p. If p is
close to 0 or 1, the lower bound [X frac(c) | is very often equal to x(G), and its quality
decreases as p approaches % This makes rand n_p with p ~ % the most difficult
type of random graphs to color. For this reason, our tests have only been run with
values p = 0.3,0.5 0.7, and n = 70, 80, 85, 90, which is about the limit size beyond

which actual exact algorithms do not finish in reasonable time.

6.1.2 Geometric graphs and reverse geometric graphs

A geometric graph of type G_n_d is constructed by uniformly generating n points in
a square of side 1, and linking two vertices if their points are distant at most by
d. The reverse geometric graph RG_n_d is obtained the same way, but by linking
two vertices if their distance is at least d. Notice that if the set of points and a
distance d are given, the corresponding geometric and reverse geometric graphs are
complements of each other.We tested our algorithm first on geometric graphs with
500 vertices, d = 0.1,0.5,0.9, then on reverse geometric graphs with the same sizes
and distances.

6.1.3 Queen graphs

The queen graph queen n m is obtained by associating a vertex to each square of
an n X m chessboard, and linking two vertices a and b if a queen could move in
one step from the square of vertex a to the square of vertex b. It is clear that

17

X(queen n m) > max(n,m), since the vertex set corresponding to a row or column
is a clique of size n or m, respectively. It is known that if n = m is not a multiple
of 2 or 3, then y(queen_n_n) = max(n,m). Recently, the converse has been shown
not to be true: for each 12 < n < 24, y(queen.n.n) = n, see [Vas04]. So the most
interesting queen_n_n graphs for our algorithm will be with n < 10, being a multiple
of 2 or 3.

6.1.4 Mycielski graphs

In [Myc55], the following graph transformation is proposed. Given a graph G =
({z1,...,z,}, E), construct a new graph M (G) with vertex set

{yla"'7ynazla"'aznaw}

and edge set such that {z1,...,2,} is a stable set, y; is linked to y; if and only if z; is
linked to z;, y; is linked to z; if and only if z; is linked to z; and w is linked to all z;. It
is not difficult to prove that x(M(G)) = x(G) + 1, while w(M(G)) = w(G). Hence
this transformation permits to obtain graphs with arbitrarily large gaps between
chromatic and clique numbers. The graph Myciel 1 is K», so Myciel 2=M(K,) =
Cs, Myciel 3 is a graph with chromatic number 4 and clique number 2, and more
generally y(Myciel k) =k + 1.

It is shown in [LPU95] that

1

M iel k) = M i l_k_l :
Xy(Myeiel k) = xy(Myeiel k1) + - ST

So for the smaller Mycielski graphs:
Xr(Myciel 2) = 2.5, x¢(Myciel_3) = 2.9,

Xr(Myciel 4) o~ 3.24, xs(Myciel_5) ~ 3.55

and so on. The gap x(Myciel k) — [xs(Myciel k)| becomes thus arbitrarily large
as k increases. This makes Mycielski graphs the most difficult graphs (with a given
number of vertices) to color of our whole instance set.

6.2 Comparisons of using GC(Cov) and GC(Pack)

The variant presented in this section is about the same algorithm as in [MT96],
except the way of computing x¢(G), since the formulation used is GC(Pack). As
mentioned in Section 2, the set of variables is {zs : s € S3} and is much larger
than S,,q.. However, since the number of constraints is also V|, no more than |V/|

18

variables will have a strictly positive value at each basic solution, and the computa-
tional time required to solve the linear program to optimality is comparable to the
time required with GC(Cov). Comparisons of execution time and size of enumera-
tion tree between both branch-and-price algorithms are given in Table 1. All times
are given in seconds, and the columns “Nodes” contain the number of nodes in the
enumeration tree. For random, geometric and reverse geometric graphs, all values
are averages over 10 graphs, and in brackets are the number of instances solved
within one hour, if less than 10. Only one Mycielski graph appears in the tables,
since no version of our algorithm could solve Myciel 5 (which has only 47 vertices).
This is clearly due do the large gap between x(G) and x(G), leading to a large
enumeration tree.

GC(Cov) GC(Pack)

‘ Graph ‘ X ‘ Xt Time ‘ Nodes | Time ‘ Nodes
rand 70.0.3 | 7.88 | 6.83 | 489(9) | 2022 | 301(8) 805
rand_70.0.5 | 11.8 | 10.7 | 41.3 402 37.3 278
rand_70.0.7 | 17.1 | 16.3 12.9 7.4 2.2 4.4
rand 80.0.3 | 8.1 | 7.35 225 443 226 351
rand 80.0.5 | 12.7 | 11.6 | 178(9) | 1197 | 240(9) | 1083
rand_80.0.7 | 19 | 179 23.9 151 34 402
rand 85.0.3 | 8.66 | 7.66 | 22.5(2) 1 14.3(2) 1
rand 85.0.5 | 13 | 12.0 [57.2(9) | 204 46(9) 143
rand 85.0.7 | 19.8 | 18.7 37.1 315 29.4 237
rand 90.0.3 | 9 7.94 | 239(6) | 130 | 215(6) 127
rand 90.0.5 | 13.8 | 12.5 | 160(5) | 642 722(6) | 2177
rand_90.0.7 | 20.5 | 19.35 | 78.3 801 64 459

g-300.0.1 | 104 | 104 11 1 37.3 1
g-300.0.5 | 80.5 | 80.3 348 121 444 106
g-300.0.9 | 206 | 206 487 1 114 1
gr_300.0.1 | 71.7 | 71.3 76.7 5.8 | 47.3(8) | 22.7
gr_300.0.5 | 7.1 | 6.82 56 70 1670(5) 1
gr_300.0.9 | 3.8 | 3.67 31.1 1 1390 1
queen8_8 9 8.44 7.45 1 1.67 1
queen8_9 9 9 - - 1520 4677
queen9_9 10 9 78.7 95 34.3 21
myciel 4 d 3.24 1.35 659 3.36 993

Table 1: Performances with GC(Cov) and GC(Pack).

Results are mixed. While the version with GC(Pack) seems to work slightly

19

better on queen graphs, it is much less efficient on reverse geometric graphs and
results are comparable on geometric and random graphs. More generally, it seems
that GC(Pack) is more appropriate for graphs with high density; for graphs with
low density and large stable sets, GC(Cov) becomes more efficient. Notice that both
algorithms differ only by the way of computing x¢(G). Those results can hence be
explained by the fact that GC(Pack) involves as many

Yariable as there are stablg sets in G, while GC(COU') [Typeof G | ~a(G)]
involves a variable per maxzimal stable set. So the addi- rand.n 0.3 14
tional number of variables in GC'(Pack) becomes much

i ! rand n 0.5 9
larger for these graphs with low density and large sta-

i } rand n 0.7 6
ble sets. Table 2 gives the approximate values of a(G) 3000 1 =1
for our instance set. Those results permit us anyway to g_SOO_O' 5 G
assert that GC(Pack) is not worse than GC(Cov) for g_300_0-9 5
using in a branch-and-price approach. Since there are ggr__ 30 O__ O-. 1 10

more results in the literature about set packing poly-
topes, as compared to the set covering polytopes, many
extensions to the presented algorithm may be tried.

gr_300.0.5 80

gr_300.0.9 206
queen nm | min(n,m)
myciel 4 11

6.3 Preprocessing
Table 2: Approximate
values of a(G) for our in-
stance set.

Here we see how one can sometimes slightly speed up
the algorithm by applying two simple vertex deletion
rules at each node of the branch-and-bound tree. The
first rule is built on the notion of domination defined in
Section 4. Recall that a vertex v dominates a vertex w
if N(w) C N(v), and a dominated vertex can always be removed from the graph
without decreasing the chromatic number. The second rule requires the knowledge
of a lower bound x on x(G). A vertex v such that d(v) < x —1 can also be removed
from the graph, since there is always a color in the set {1,...,x — 1}, available
for vertex v, after having optimally colored G[V'\{v}]. This last reduction is worth
being applied, as we have a good lower bound on x(G). Hence the following simple
procedure sometimes permits one to reduce the graph G, without changing x(G).

Input: Graph G, lower bound x on x(G)
Output: Possibly reduced graph G’, s.t. x(G') = x(G).

1: Set G' = G,

2: repeat

3: Remove each dominated vertex from G;

4 Remove each vertex v such that d(v) < x —1;
5: until no more vertex can been removed this way.

Since at each node of the branch-and-bound tree the problem is a graph coloring

20

one, this preprocessing can be called each time a new subproblem has been created.
The complexity of checking if a node is dominated being roughly in O(|V|?), each
loop’s complexity is in O(|V'|3). This is small as compared to the time necessary
to compute the lower bound x;(G), which requires to solve at least one maximum
weight stable set problem on G to optimality.

The computation time and number of nodes in the enumeration tree with and
without preprocessing are presented in Table 3. Formulation GC(Cov) is used, and
results without proprocessing are reported from Table 1. The additional column
“Deleted” shows the average (over all nodes in the enumeration tree) number of
deleted vertices due to the preprocessing.

No preprocessing With preprocessing
‘ Graph ‘ X ‘ Xf Time ‘ Nodes | Time ‘ Nodes ‘ Deleted
rand 70.0.3 | 7.88 | 6.83 | 489(9) 2022 | 481(9) | 2070 | 0.0022
rand_70.0.5 | 11.8 | 10.7 41.3 402 37.1 395 0.0025
rand 70.0.7 | 17.1 | 16.3 12.9 74 12.8 6.8 0.0735
rand 80.0.3 | 8.1 | 7.35 225 443 209 419 0.0035
rand 80.0.5 | 12.7 | 11.6 | 178(9) 1197 170(9) | 1190 | 0.0005
rand_80.0.7 | 19 | 17.9 23.9 151 22.2 146 0.0238
rand 85.0.3 | 8.66 | 7.66 | 22.5(2) 1 22.5(2) 1 0
rand 85.0.5 | 13 | 12.0 | 57.2(9) 204 55.5(9) | 194 0.0005
rand 85.0.7 | 19.8 | 18.7 37.1 315 37.0 302 0.0353
rand 90.0.3 | 9 7.94 | 239(6) 130 238(6) 130 0
rand 90.0.5 | 13.8 | 12.5 | 160(5) 642 161(5) | 642 0
rand 90.0.7 | 20.5 | 19.35 | 78.3 801 83.1 839 0.0219
g-300.0.1 | 10.4 | 104 11 1 114 1 10.4
g-300.0.5 | 80.5| 80.3 348 121 280 63.2 0.86
g-300.0.9 | 206 | 206 487 1 348 1 17.2
gr 300.0.1 | 71.7 | 71.3 76.7 5.8 23.7 24 77
gr 300.0.5 | 7.1 | 6.82 56 70 1.9 1.2 222
gr_300.0.9 | 3.8 | 3.67 31.1 1 0.41 1 295
queen8_8 9 8.44 7.45 1 7.31 1 0
queen8_9 9 9 - - - - -
queen9_9 10 9 78.7 95 78.9 95 0
myciel 4 5 3.24 1.35 659 1.13 517 1.34

Table 3: Performances with and without preprocessing.

Results on random graphs indicate that it is worth running the preprocessing.
Although there are only few graphs where vertices could be deleted, some time

21

has been saved, and the enumeration tree tends to be somewhat smaller. Notice
that for some instances the number of visited nodes has increased, when only a few
vertices have been deleted. On geometric graphs, a substantial number of vertices
are removed by the preprocessing, which is a direct consequence of the structure of
the graph: vertices near a corner have a good chance of having a small degree, or of
being dominated. For reverse geometric graphs the effect is even stronger: in most
cases, more than half the graph is removed, and the larger the parameter d, the
more vertices are removed, what is not difficult to understand. For queen graphs,
results show that the preprocessing brings no improvement. This is not surprising,
as vertices have all about the same degree and symmetrical characteristics. For
Mycielski graphs, the preprocessing brings some improvement, although Myciel 5
could still not be solved within one hour.

To summarize, the computation times are not systematically better, but they are
worse in only few cases. Indeed, as compared to the column generation procedure,
the preprocessing takes very little time. Since it relies on simple detection rules, it
is not difficult to implement. So it is worth inserting a call to such a procedure at
each node of the branch-and-bound tree of any graph coloring algorithm, provided
that the subproblems are still graph coloring problems. Finally, we observed in our
experiments, that nodes were deleted thanks to the domination criterion rather than
to the low degree criterion. So even if no good lower bound is known, it may be
applied successfully.

6.4 A cutting plane procedure for GC(Cov)

We present here a cutting plane generation procedure, which is the only one that
gave us satisfying results. It consists in detecting some violated (0, %)-inequalities
for the GC'(Cov) formulation.

Specifically, a relaxation of GC(Cov) is considered in which the original con-

straint
> sz
SESmaCL‘ weS

corresponding to each vertex v is replaced by a set of constraints

$5i+$gj—|—2 Z %521VS¢,SjESmamZU€SZ‘ﬂSj
S€Smaz\{Si,S;}:weS

One can determine in polynomial time whether there exists a (0,1)-inequality based
on this new system GC,(C) which is violated by the current solution z* since
GC,(C) contains at most two odd coefficients per row, see [CF96]. This separation
problem amounts to finding a minimum-weight odd cycle C* in the conflict graph

G = {Snaz, {(S,5") : SNS" # 0} }, in which the weight of an edge (5;,S;) is equal

22

to

*
T, + a5, — 1+2v£1%15{ > TG}
J SGSmaz\{Szys }UGS

If the minimum weight odd cycle C* has a weight smaller than one, the (0, %)—
Chvatal-Gomory cut (CG cut) involving the inequalities of GC,¢(C') defining the
edges of C* is violated. The (0,4)-CG cut involving the corresponding original
inequalities, i.e., from GC(Cov), is also violated by the current solution and we thus
add it to the current program.
Note that only stable sets S s.t. 0 < 2% < 1 need to be considered when solving the
minimum weight odd cycle problem. Indeed, the weight of an edge linking xg, ans
Tg; 18

rg, +ag —1+2 min { > xo} > oy + oy — 1.
VESINST G S mas \{51,8; }iveS ' !
Hence the total weight of any odd cycle C' containing a vertex (stable set) S is larger
than [22% — 1|, which implies that the corresponding (0, 1)-CG cut is not violated
if x5 =0or 1.

Unfortunately, the pricing problem is not exactly a maximum weight stable set
problem anymore. However, the new problem structure remains similar to the max-
imum stable set problem as will be shown now.

Each cutting plane corresponds to a subset of vertices of odd cardinality. Denote
by H = {H,,..., H,} the set of those odd-sized subsets. At the optimum of the
restricted linear program, the reduced cost for a nonbasic variable (stable set) S is
given by

|S N H \
1- Z)\ - Z ,Uz a
€S
where Ai,..., Ay, are the dual variables corresponding to the vertex cover con-
straints and p, . . ., i, are the dual variables corresponding to the generated cutting

planes. Here [‘SH—QHW is the coefficient of the variable corresponding to .S, in the
constraint corresponding to H;. Since GC(Cov) is a minimization problem, a vari-
able xg may enter the basis if and only if its reduced cost is strictly lower than 0,
which is achieved if and only if

pRPYRE Y EAALCL Y
€S =1
In other words, the pricing problem consists in finding a stable set S with ob-
jective larger than 1, where the objective is the sum over S of the weights, plus a
“bonus” u; for each subset H;. This bonus is counted once if S has 1 or 2 vertices in
H;, twice if S has 3 or 4 such vertices, three times if S has 5 or 6 such vertices, and
so on. Although this is a nonlinear contribution to the objective, it is not difficult

23

to take into account in the exact (branch-and-bound) algorithm, and has a good
linear approximation that can be used in the heuristic procedures.

Applying this to our graphs, we observed that the lower bound on x(G) was
increased in most cases by less than 0.1. So we decided to run the cutting plane
algorithm only on those nodes where increasing the lower bound by 0.1 could permit
to backtrack, i.e., where x5, (G) =1 —1t < X (G’) < Xsup(G) — 1, with x4, (G) being
the value of the best coloring found so far, and ¢ a threshold value we fixed at 0.1.
Though the increase in the lower bound is small, we could obtain interesting results,
thanks to the quickness of our plane procedure. In Table 4, column ”Cuts” contains
the average (over all nodes in the enumeration tree) number of cuts added to the
formulation, and under “Back.” are the numbers of nodes where the lower bound
on x(G) could be sufficiently increased to permit to backtrack.

No Cuts With cuts
‘ Graph ‘ X ‘ Xf Time ‘ Nodes | Time ‘ Nodes ‘ Cuts ‘ Back.
rand 70.0.3 | 7.88 | 6.83 | 489(9) | 2020 | 655(8) | 821 | 2.11 29
rand_70.0.5 | 11.8 | 10.7 | 41.3 402 55.8 250 | 5.34 | 26.2
rand_70.0.7 | 17.1 | 16.3 | 129 74 13.1 3.4 547 | 0.4
rand 80.0.3 | 8.1 | 7.35| 225 4438 |20.1(9) | 2.55 | 0.35 | 0.11
rand 80.0.5 | 12.7 | 11.6 | 178(9) | 1197 | 258(9) | 833 | 553 | 754
rand 80.0.7 | 19 | 17.9| 239 151 27.2 68.2 | 9.17 | 9.6
rand 85.0.3 | 8.5 | 7.63 | 22.5(2) 1 22.4(2) 1 0 0
rand 85.0.5 | 13 | 12.0 | 57.2(9) | 204 |[86.6(9)| 139 | 6.03 | 11.1
rand 85.0.7 | 19.8 | 18.7 | 37.1 315 37.1 124 | 7.75 | 24.6
rand 90.0.3| 9 |7.94| 239(6) | 130 | 264(6) | 125 | 0.57 | 1.33
rand 90.0.5 | 13.8 | 12.6 | 160(5) | 642 | 204(5) | 377 5.6 | 334
rand 90.0.7 | 20.5 | 19.3 | 78.3 801 85.3 313 | 9.25 | 60.3
g 300.0.1 | 10.4 | 104 11 1 11.3 1 0 0
g-300.0.5 | 80.5|80.3 | 348 121 380 123 | 241 0
g-300.0.9 | 206 | 206 487 1 487 1 0 0
gr 300.0.1 | 71.7 | 71.3 | 76.7 5.8 76.3 5.8 0.1 0.1
gr_300.0.5 | 7.1 | 6.82 56 70 53.3 30.6 | 0.63 | 2.2
gr 300.0.9 | 3.8 | 3.67| 3l1.1 1 31.1 1 0 0
queen8_8 9 | 844 | 745 1 7.33 1 0 0
queen8_9 9 9 - - - - - -
queen9_9 10 9 78.7 95 89.2 31 10.1 4
myciel 4 5 324 135 659 1.88 339 | 2.79 88

Table 4: Performances with and without adding cutting planes.

As can be seen, the average computation time is not better, but the enumeration

24

tree is often much smaller. Those results are encouraging, since there are several
points which may be improved in our algorithm. First, the cutting planes generated
at a given node are not kept in the descendant nodes. Although the set of variables
change, since the graph is modified, there should be a way of keeping at least some
partial information on the cuts generated. Further, we did not try values different
from 0.1 for the threshold . In particular, if some information about cutting planes
is kept when branching, a larger value for ¢ may bring better results.

7 Conclusion

Two formulations of the graph coloring problem involving an exponential number
of variables are explored. They are a covering formulation, already considered by
[IMT96] and a new packing formulation. Several families of facets are character-
ized: inequalities in the initial formulations and further inequalities derived from a
lemma of [Sas89] and maximal cliques in the conflict graph of stable sets. Necessary
or sufficient conditions for additional classes of facets are also given. Computa-
tional results with branch-and-cut-and-price algorithms show both formulations to
be about equally efficient. Preprocessing based on vertex deletion proved to be use-
ful when applied at each node of the branch-and-bound tree. A facet generating
procedure for the set covering formulation, while not reducing computation time
substantially, entailed a reduction in the size of the enumeration tree.

References

[BHV00] C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-
cut tu solve origin-destination integer multicommodity flow problems.
Operations Research, 48(2):318-326, Mar-Apr 2000.

[Bl601] L. Blochliger. A new heuristic for the graph coloring problem. Master’s
thesis, Ecole Polytechnique Fédérale de Lausanne, 2001.

[CF96] A. Caprara and M. Fischetti. {0,3}-Chvatal-Gomory cuts. Mathematical
Programming, 74:221-235, 1996.

[Chv73] V. Chvéatal. Edmonds polytopes and a hierarchy of combinatorial prob-
lems. Discrete Mathematics, 4:199-216, 1973.

[CMaZ02] P. Coll, J. Marenco, I. Méndez Diaz, and P. Zabala. Facets of the graph
coloring polytope. Annals of Operations Research, 116(1-4):79-90, 2002.

[CS89] G. Cornuéjols and A. Sassano. On the 0,1 facets of the set covering
polytope. Mathematical Programming, 43:45-55, 1989.

25

[GLS93]

[LPU95]

[MT96]

[Myc55]

INPY1]

[Pad73]

[Sas89]

[Sch97]
[Sch03]
[Sch04]

[Vas04]

M. Grétschel, L. Lovasz, and A. Schrijver. Geometric algorithms and
combinatorial optimization. Springer-Verlag, 1993.

M. Larsen, J. Propp, and D. Ullman. The fractional chromatic number
of Mycielski’s graphs. J. Graph Theory, 19:411-416, 1995.

A. Mehrotra and M. A. Trick. A column generation approach for graph
coloring. INFORMS, Journal on Computing, 8(4):344-354, 1996.

J. Mycielski. Sur le coloriage des graphes. Colloguium Mathematicum,
3:161-162 (in French), 1955.

G. L. Nemhauser and Sungsoo Park. A polyhedral approach to edge
coloring. Operations Research Letters, 10:315-322, 1991.

M. W. Padberg. On the facial structure of set packing polyhedra. Math-
ematical Programming, 5:199-215, 1973.

A. Sassano. On the facial structure of the set covering polytope. Mathe-
matical Programmaing, 44:181-202, 1989.

E. R. Scheinerman. Fractional Graph Theory. Wiley-Interscience, 1997.
A. Schrijver. Combinatorial Optimization, volume B. Springer, 2003.

D. Schindl. Some Combinatorial Optimization Problems in Gmphs/wz’th
Applications in Telecommunications and Tomography. PhD thesis, Ecole
polytechnique fédérale de Lausanne, 2004.

M. Vasquez. New results on the Queens_n? graph coloring problem. Jour-
nal of Heuristics, 10(4):407-413, July 2004.

26

