
A COLUMN GENERATION APPROACHFOR GRAPH COLORINGAnuj MehrotraDepartment of Management ScienceSchool of Business AdministrationUniversity of MiamiCoral Gables, FL 33124-8237e-mail: anuj@nirvana.bus.miami.edu Michael A. TrickGraduate School of Industrial AdministrationCarnegie Mellon UniversityPittsburgh, PA 15213-3890e-mail: trick+@cmu.eduApril 11, 1995AbstractWe present a method for solving the independent set formulation of the graph col-oring problem (where there is one variable for each independent set in the graph).We use a column generation method for implicit optimization of the linear programat each node of the branch-and-bound tree. This approach, while requiring the solu-tion of a di�cult subproblem as well as needing sophisticated branching rules, solvessmall to moderate size problems quickly. We have also implemented an exact graphcoloring algorithm based on DSATUR for comparison. Implementation details andcomputational experience are presented.1 INTRODUCTIONThe graph coloring problem is one of the most useful models in graph theory. This problemhas been used to solve problems in school timetabling [10], computer register allocation [7, 8],electronic bandwidth allocation [11], and many other areas. These applications suggest thate�ective algorithms for solving the graph coloring problem would be of great importance.Despite this relevance, there are relatively few methods available for solving graph col-oring instances exactly. Those that are available ([21, 22]) are limited to solving smallinstances. In contrast, heuristic techniques have been designed that solve instances withhundreds or thousands of vertices ([14, 15, 25]) at the cost of regularly suboptimal solutions.We suggest an approach based on an integer programming formulation of the graphcoloring problem. This formulation, called the independent set formulation, has a variablefor each independent set in the graph. While this formulation is well known, the enormousnumber of variables has apparently discouraged use of it as a computational method. Weshow that it is possible to develop an e�ective column generation technique for this problem1

while still ensuring integrality with appropriate branching rules. This method is tested on avariety of instances and is shown to be robust and more e�ective than previous techniquesin solving moderately sized instances.In section 2, we develop the independent set formulation of the graph coloring problemand discuss various advantages of the formulation. In section 3, we discuss techniques forgenerating columns in this formulation and outline one method for such generation. Insection 4, we develop alternative branching rules and discuss their characteristics. In section5, we describe our implementation details. In section 6, we present the computational results,and in the �nal section, we give some directions for future exploration.2 A COLUMN GENERATION MODELLet G = (V;E) be an undirected graph on V , the set of vertices, with E being the set of ofedges. Let jV j = n and jEj = m.A coloring of G is an assignment of labels to each vertex such that the endpoints of anyedge have di�erent labels. A minimum coloring of G is a coloring with the fewest di�erentlabels among all possible colorings.An independent set of G is a set of vertices such that there is no edge in E connecting anypair. Clearly, in any coloring of G, all vertices with the same label comprise an independentset. A maximal independent set is an independent set that is not strictly included in anyother independent set.The problem of �nding a minimum coloring in a graph can be formulated in many ways.For instance, the problem of determining if K colors su�ce can be formulated as follows.Let xik, i 2 V , 1 � k � K be a binary variable that is 1 if vertex i is assigned label k and0 otherwise. The problem is then to determine if the following system (denoted (VC) forvertex{color) has a feasible solution:xik + xjk � 1 8 (i; j) 2 E; 8 kXk xik = 1 8 ixik 2 f0; 1g:The minimum graph coloring problem can then be solved by doing binary search onK to �nd the minimum value for which the above system has a feasible solution. Thisformulation, while correct, is di�cult to use in practice. One obvious problem is the size ofthe formulation. Since K can be as large as n, the formulation can have up to n2 variablesand nm + n constraints. Given the need to enforce integrality, this formulation becomescomputationally intractable for all except the smallest of instances. This is especially truebecause the linear programming relaxation is extremely fractional. To see this, note that xik= 1=K for every i; k is feasible whenever K � 2.2

A second, less obvious, problem involves the symmetry of the formulation. The variablesfor each k appear in exactly the same way. This means that it is di�cult to enforce integralityin one variable without problems showing up in the other variables because any solution tothe linear relaxation has an exponential number (as a function of K) of representations.Therefore, branching on xi1 to take on integral values does little good because it results inanother representation of the same fractional solution in which xi2 takes on the old value ofxi1 and vice-versa.We consider a formulation with far fewer constraints that does not exhibit the samesymmetry problems as our �rst formulation. Let S be the set of all maximal independentsets of G. We create a formulation with binary variables xs for each s 2 S. xs = 1 impliesthat independent set s will be given a unique label, while xs = 0 implies that the set doesnot require a label. The minimum coloring problem is then the following (denoted (IS)):Minimize Xs xsSubject to Xfs:i2Sgxs � 1 8 i 2 Vxs 2 f0; 1g 8 s 2 S:This formulation can also be obtained from the �rst formulation by using a suitable de-composition scheme as explained in [16, 24] in the context of general mixed integer programs.The formulation (IS) has only one constraint for each vertex, but can have a tremendousnumber of variables. Note that a feasible solution to (IS) may assign multiple labels to avertex. This can be corrected by using any one of the multiple labels as the label for thevertex. The alternative would be to allow non{maximal sets in S and to require equalitiesin (IS). In view of the ease of correcting the problem versus the great increase in problemsize that would result from increasing S, we choose the formulation given.This formulation exhibits much less symmetry than (VC): vertices are combined intoindependent sets and forcing an independent set to 0 means that no color can correspondto that independent set. Furthermore, it is easy to show [24] that the bound provided bythe linear relaxation of (IS) will at least be as good as the bound provided by the linearrelaxation of (VC).The fact remains, however, that (IS) can have far more variables than can be reasonablyattacked directly. We resolve this di�culty by using only a subset of the variables and gener-ating more variables as needed. This technique, called column generation, is well known forlinear programs and has recently emerged as a viable technique for some integer program-ming problems [4, 17]. The need to generate dual variables (which requires something likelinear programming) while still enforcing integrality makes column generation proceduresnontrivial for integer programs. The procedures need to be suitably developed and theire�ectiveness is usually dependent on cleverly exploiting the characteristics of the problem.The following is a brief overview of the column generation technique in terms of (IS).Begin with a subset �S of independent sets. Solve the linear relaxation (replace the integrality3

constraints on xs with nonnegativity) of (IS) restricted to s 2 �S. This gives a feasible solutionto the linear relaxation of (IS) and a dual value �i for each constraint in (IS). Now, determineif it would be useful to expand �S. This is done by solving the following weighted independentset problem (MWIS): Maximize Xi2V �iziSubject to zi + zj � 1 8 (i; j) 2 Ezi 2 f0; 1g 8 i 2 V:If the optimal solution to this problem is more than 1, then the zi with value 1 correspondto an independent set that should be added to �S. If the optimal value is less than or equalto 1, then there exist no improving independent sets: solving the linear relaxation of (IS)over the current �S is the same as solving it over S.This process is repeated until there is no improving independent set. If the resultingsolution to the linear relaxation of (IS) has xs integer for all s 2 �S, then that correspondsto an optimal solution to (IS) over S. When some of the xs are not integer, though, we arefaced with the problem of enforcing integrality.To complete this algorithm, then, we need to do two things. First, since (MWIS) isitself a di�cult problem, we must devise techniques to solve it that are su�ciently fast tobe able to be used over and over. Second, we must �nd a way of enforcing integrality ifthe solution to the linear relaxation of (IS) contains fractional values. Standard techniquesof enforcing integrality (cutting planes, �xing variables) make it di�cult or impossible togenerate improving independent sets. We discuss these two problems in the next two sections.3 SOLVING THE MAXIMUM WEIGHTED INDE-PENDENT SET PROBLEMThe maximum weighted independent set problem is a well studied problem in graph theoryand combinatorial optimization (though often under the name of maximumweighted clique,where a clique is an independent set in the complement of a graph). Various solutionapproaches have been tried, including implicit enumeration [6], integer programming withbranch and bound [2, 3], and integer programming with cutting planes [1, 27]. In addition anumber of heuristics have been developed [28] and combined with general heuristic methodssuch as simulated annealing [13]. In this section, we outline a simple recursive algorithmbased on the work of [20] and describe a simple greedy heuristic that can be used to reducethe need for the recursive algorithm.The basic algorithm for �nding a maximum weight independent set (MWIS) is based onthe following insight: Given a graph G and a vertex i 2 V , the MWIS in G is either theMWIS in G restricted to V=fig or it is i together with the MWIS in AN(i), where AN(i) is4

the anti{neighbor set of i: the set of all vertices j in V where there is not (i; j) 2 E. Thisinsight, �rst examined by [20] for the unweighted case, leads to the following recursion whichcan be turned into a full program:MWIS(G [fig) = max(MWIS(G),MWIS(fig [AN(i))).While this approach is reasonably e�ective for not{too{sparse graphs, it can be improvedby appropriately ordering the vertices. The following have been shown to be e�ective inreducing the computational burden of the recursion:1. Begin with a good MWIS. Note that if G itself is an independent set then adding anindependent vertex to it will require the resolution of the current MWIS. This can beavoided by starting with a good MWIS. Then adding a vertex will necessarily involvesolving a new problem.2. Order the remaining vertices in order of degree from lowest to highest. During the �nalstages of the recursion, it is important to keep the anti{neighbor set small in order tosolve the MWIS on as small a graph as possible. Since vertices with high degree havesmall anti{neighbor sets, those should be saved for the end.3. Try to determine if a branch of the recursion can possibly return a MWIS better thanthe incumbent. For instance, if the total weight of the set examined is less than theincumbent, the incumbent is necessarily better, so it is unnecessary to continue therecursion.4. Use a faster code for smaller problems. It appears that a weighted version of the methodof Carraghan and Pardalos [6] is faster for smaller problems, particularly when it isable to terminate when it is clear that no independent set is available that is betterthan the incumbent. In our tests, which use relatively small graphs, we use a variantof Carraghan and Pardalos for all except the �rst level of recursions, which echos theresults of Khoury and Pardalos in the unweighted case.In the context of our column generation technique, it is not critical that we get the best(highest weight) maximal independent set: it is su�cient to get any set with weight over1. This suggests that a heuristic approach for �nding an improving column may su�ce inmany cases. It is only when it is necessary to prove that no set exists with weight over 1(or when the heuristics fail) that it is necessary to resort to the recursion. There are manyheuristics for weighted independent sets. The simplest is the greedy heuristic: begin with(one of) the highest weighted vertices. Add vertices in non-increasing order of their weightmaking certain that the resulting set remains an independent set.This heuristic, in addition to being simple, is very fast, and seems to work reasonablywell. The resulting independent set can either be added directly to (IS) (if it has value over1) or can be used as a starting point for the recursion. We will examine the value of thisheuristic in the computational results. 5

4 BRANCHING RULEA di�cult part about using column generation for integer programs is the development ofbranching rules to ensure integrality. Rules that are appropriate for integer programs wherethe entire set of columns is explicitly available do not �t in well with restricted integerprograms where the columns are generated by implicit techniques. Consider, for instance,the rule of branching on a fractional variable, where the variable is set to 1 in one subproblemand set to 0 in the other. The former subproblem causes no problem for (IS): setting anindependent set variable to 1 corresponds to applying a single label to those vertices. Thosevertices can then be removed from the graph. The other subproblem is more di�cult. Settinga variable to 0 corresponds to not permitting the use of that independent set. How can thisinformation be passed to the subproblem (that generates maximum weight independentsets)? What if the maximum weight independent set is set to 0? How can it be checked ifthere is another independent set with value more than 1? This seems to involve �nding thesecond, third, and so on highest weight independent sets. This is a much more expensiveoperation than simply �nding the highest weight set (consider how complicated the recursionin the previous section would have to be).Cutting planes, another technique for forcing integrality, are also di�cult to �t into acolumn generation framework. For instance, consider the graph in Figure 1.e d c ba
Figure 1: Star GraphSuch a graph has maximal independent sets fa; bg; fb; cg; fc; dg; fd; eg and fe; ag. Ap-plying weights of 1/2 to each set results in a feasible solution to the linear relaxation of (IS),with objective 2.5. We would like to add a constraint that it takes three independent setsto cover these vertices. While it is easy to add such a constraint to (IS), it is not clear as tohow this can be accomplished while not complicating the subproblem.Our approach to the integrality problem is to use a branch-and-bound method with-out increasing the complexity of the subproblems. We accomplish this by devising specialbranching rules that ensure that the subproblem to be solved for each branch is itself agraph coloring problem without any additional constraints and can be solved by our column6

generation methodology. Additionally, the optimal integer solution to (IS) lies in exactlyone branch. This implies that the algorithm we use for the maximum weight independentset can be used to generate columns for the problem at every node of the branch-and-boundtree.De�ne the following operations on a graph coloring problem: SAME(S) requires that theset S all have the same label, and DIFFER(i,j) requires that nodes i and j have di�erentlabels. These operations can be implemented by changing the graph on which the coloringis done. SAME(S) can be enforced by collapsing the set S into a single vertex. A vertexoutside of S has an edge to it if and only if it has an edge to any member of S in the originalgraph. DIFFER(i,j) is even easier: it is only necessary to add an edge between i and j.Consider a fractional solution to the linear relaxation of (IS). It is easy to see that thereexist two sets S1 and S2, and vertices i; j, such that i 2 S1\S2, and j 2 S1 nS2, and at leastone of xs1 or xs2 is fractional. Create the subproblems:DIFFER(i,j)SAME(i,j).Any feasible coloring must occur in exactly one of the two sets. Furthermore, the in-dependent sets that make up the current fractional solutions are not feasible for the twosubproblems. This approach has the advantage of creating only 2 subproblems like tradi-tional branching schemes.5 IMPLEMENTATION DETAILS5.1 Column Generation MethodologyThe methodology has been implemented on a DEC ALPHA 3000 (Model 300) workstationusing CPLEX version 2.1 as the linear programming solver and MINTO version 1.5 [29] asthe integer programming solver.Currently, we generate a feasible initial coloring using a greedy heuristic (essentiallyapplying the greedy MWIS heuristic repeatedly until all nodes are colored). This gives usan initial solution to the coloring problem as well as a number of columns to add to ourlinear program. We then generate columns to improve the linear program. The followingdiscussion on generation of columns to improve the linear program is valid at each node ofthe branch-and-bound tree.5.1.1 Improving the Linear ProgramImproving Column As mentioned earlier, any solution to the MWIS with value greaterthan 1 represents an improving column for the linear program. In our current implementa-tion, we set a target to 1.1 and our MWIS algorithm either returns the �rst such solutionit �nds, failing which, it �nds the exact solution. We have also experimented with changingthis target value to a higher number initially (an approach to �nd a good set of columns asfast as possible) and then decreasing its value later on in the column generation. This hasmixed results. While, it tends to optimize the linear program at any node of the branch-and-bound tree faster, the resulting number of nodes to explore rises. We have noticed that7

the e�ort required to solve some di�cult problems can be substantially reduced by suitablyaltering this target value.Ordering the Nodes The order in which the nodes are to be considered can be speci�edin our MWIS algorithm. We have found that ordering the nodes in order of nonincreasingweights or in order of nonincreasing degree are not as e�cient as ordering them by consideringboth at the same time. In our experiments we order the nodes in nonincreasing values ofsquare root of the degree of the node times the weight of the node.Column Management Another approach to optimizing the linear program faster is togenerate several columns at every iteration rather than a single column [4]. For example, onecould use improvement algorithms that take existing columns with reduced cost equal to zeroand try to construct columns that might improve the linear program. In our experiments,we generated more candidates for improving independent sets by deleting a node from animproving independent set that was found by the MWIS procedure, and constructing otherindependent sets from the remaining set. This approach did not improve our results: whilethe total number of iterations of column generation went down, the time to generate andoptimize the linear programs between iterations o�set any savings in time because of reducednumber of iterations. When the number of columns gets large, it is useful to implementcolumn management schemes that either delete the nonbasic variables with very negativereduced costs or keep them in a temporary pool that is checked every few iterations for anyimproving columns. Since, the total number of columns generated in our experiments wasmodest at best, we did not implement such schemes.Early Branching At any node in the branch-and-bound tree, when there are more im-proving independent sets, we either get an integer solution (representing an upper boundon the number of colors required) or branch using method 1 if the linear program is frac-tional. In the latter case, the linear programming solution provides a lower-bound on thebest possible coloring available from that node. However, in our implementation, we do notwait for the linear program at a node to be optimized before branching. Rather, we optimizethe linear program only at the root node of the branch-and-bound tree to obtain a lowerbound on the number of colors required. Then at any other node of the branch-and-boundtree, we stop generating columns as soon as the restricted linear programming relaxationobjective value goes below the best possible coloring value determined by rounding up theobjective value at the root node. This tended to reduce the number of columns generatedand resulted in exploration of fewer nodes in our experiments. The resulting decrease inoverall computation time by not solving the linear programming relaxation to optimalitybefore branching has also been experienced on other combinatorial problems [4, 31].5.1.2 Branching MethodologyIn our implementation, we use a depth-�rst-search(DFS) strategy in choosing the node toevaluate. We have also experimented with the idea of choosing the node with the best-boundand of switching from a DFS strategy to the best-bound strategy after updating the upper8

bound (from the one provided by the initial solution). The DFS strategy seems to workbest in our implementation, both from a point of view of number of nodes explored and incpu-time overall.For implementing our branching, we �rst determine the most fractional column (s1).Then we �nd the �rst row i covered by this column and determine another column(s2) thatcovers row i. Then we �nd row j such that only one of the columns s1 or s2 cover row j. Wehave also experimented with choosing the �rst fractional column as s1 instead of �nding themost fractional one. This tends to increase the overall e�ort.5.2 DSATURIn addition to our column generation approach to graph coloring, we have implemented anexact graph coloring algorithm based on the DSATUR algorithm �rst developed by Br�elaz[5]. We will use this algorithm as a comparison code to determine the e�ectiveness of columngeneration.DSATUR works by dividing a graph coloring instance into a series of subproblems. Asubproblem in DSATUR is a partial coloration of the graph. At each step of the algorithm,there is an upper bound UB on the number of colors required for the graph. If a subproblemuses k colors, and k is at least UB, clearly the subproblem can be fathomed. Alternatively,if every node in the graph is colored, and k < UB, then a better coloring has been foundand UB can be set to k.If the graph is not completely colored, and the number of colors used is less than UB, newsubproblems are created. Some uncolored node i is chosen for branching. For each feasiblecolor for i (out of the k used in the subproblem), a new subproblem is created assigning ithat color. In addition, a subproblem is created with i receiving color k + 1.The algorithm terminates when there are no subproblems left. At this point, UB givethe coloring number of the graph.The choice of branch node i can have a large e�ect on the algorithm. In a heuristic, Br�elez[5] suggests choosing the node adjacent to the largest number of di�erently colored nodes.This has the e�ect of reducing the number of subproblems created at each branch. Ties canbe broken by choosing a node with highest degree in the uncolored subgraph. Korman [19]recommended using this within the optimization routine, and Kubale and Jackowski [21]con�rm that this is an e�ective choice in their experiment.A further modi�cation is suggested by Sewell [30]. If the �rst k nodes colored form aclique, then it is clear that they will never be recolored. This suggests that it would be usefulto �nd a maximum clique in the graph and color those nodes �rst. This approach is a largeimprovement when the clique value and the coloring number of a graph are close, and seemsa good idea for many instances.Our version of DSATUR attempts to �nd the maximum clique in the graph using theunweighted versions of the clique �nding algorithms previously presented. Since it is notcritical to prove the optimality of the clique, we terminate the clique search once 10,000clique subproblems have been generated. In the vast majority of the instances we solved,the optimal clique was found in far fewer subproblems.The rest of the nodes are dynamically ordered in terms of the number of adjacent colors9

and subproblems are created as in the basic DSATUR algorithm. Subproblems are solvedin a depth{�rst search manner.6 COMPUTATIONAL RESULTS6.1 Instance DescriptionIn our computational experiments, we use instances drawn from a large number of sources.Our goal is to determine the robustness of the approaches. For some of these graphs, thecoloring problem has no real interpretation. We use these graphs as examples of structuredgraphs, rather than just experimenting on random graphs. Here we brie
y describe theinstance classes.Random Graphs Random graphs are ubiquitous in computational experiments for graphcoloring. G(n; p) is formed by generating a graph on n vertices, where each edge occursindependently with probability p.Register Graphs One standard application of graph coloring is register allocation. Inthis problem, a compiler is attempting to assign variables to registers. Two variables canbe assigned to the same register if they are not both required at the same time in a codefragment. Condon [9] has developed a program that takes code fragments and generates thecorresponding graph coloring problem.Geometric Graphs A di�erent type of random graph is created by generating 2n randomnumbers in the range (0,1) and treating pairs number as coordinates in the Euclidean unitsquare. A node is placed at each coordinate, and two nodes are connected by an edge if andonly if the Euclidean distance between them is less than some cuto� value. Alternatively,a reverse geometric graph results when edges correspond to nodes that are more than somedistance apart.Book Graphs Given a work of literature, a graph is created where each node representsa character. Two nodes are connected by an edge if the corresponding characters encountereach other in the book. Knuth [18] creates the graphs for �ve classic works: Tolstoy'sAnna Karenina (anna), Dicken's David Copper�eld (david), Homer's Iliad (homer), Twain'sHuckleberry Finn (huck), and Hugo's Les Mis�erables (jean).Game Graphs A graph representing the games played in a college football season canbe represented by a graph where the nodes represent each college team. Two teams areconnected by an edge if they played each other during the season. Knuth [18] gives thegraph for the 1990 college football season. 10

Miles Graphs These graphs are similar to geometric graphs in that nodes are placed inspace with two nodes connected if they are close enough. These graphs, however, are notrandom. The nodes represent a set of United States cities and the distance between them isgiven by by road mileage from 1947. These graphs are also due to Kuth [18].Queen Graphs Given an n by n chessboard, a queen graph is a graph on n2 nodes, eachcorresponding to a square of the board. Two nodes are connected by an edge if the corre-sponding squares are in the same row, column, or diagonal. Unlike some of the other graphs,the coloring problem on this graph has a natural interpretation: Given such a chessboard,is it possible to place n sets of n queens on the board so that no two queens of the same setare in the same row, column, or diagonal? The answer is yes if and only if the graph hascoloring number n. Gardner [12] states without proof that this is the case if and only if nis not divisible by either 2 or 3. In all cases, the maximum clique in the graph is no morethan n, and the coloring value is no less than n.Mycielski Graphs Given a graph G with vertex set fv1; v2; : : : ; vng, we can get the My-cielski transformation [26] �(G) of G by creating a graph with vertex setfx1; x2; : : : ; xn; y1; y2; : : : ; yn; zgand edges xixj if and only if vivj 2 E(G), xiyj if and only if vivj 2 E(G) and yiz for alli. Larson, Propp, and Ullman [23] show that as long as G has at least one edge, the size ofthe largest clique in the graph is not a�ected by this transformation. They also show thatthe coloring number goes up by one. Finally, they show that if the solution to the linearrelaxation of the coloring problem (IS) for G is k, then the corresponding solution for �(G)is k + 1=k.If we let G1 be the graph with two nodes and a single edge, and recursively de�neGi+1 = �(Gi), then each Gi is triangle{free (the maximum clique is 2), has coloring numberi+1, and has linear relaxation of IS value in between those two values. As such, these graphsseem di�cult to solve since neither the clique nor the linear relaxation of IS can provide tightbounds.6.2 Summary of ResultsThe results on various coloring instances are summarized in Tables 1{ 4. The followingresults are presented:� Size: Lists the number of nodes and the number of edges in the graph.� GR: The value of the feasible coloring returned by the greedy heuristic. This heuristicgenerates the starting solution for LPCOLOR, the column generation based procedure.� Bounds: These provide the lower bounds on the optimal coloring value for the graph.CL represents the bound provided by the size of the maximum clique in the graph.When the maximum clique used for providing the CL bound is not con�rmed to bemaximum, an asterisk is placed to indicate that. The LP lower bound is the value of11

the optimal linear programming objective value at the root node of the branch-and-bound tree in our methodology and LPup is the lower bound provided by rounding upthe LP bound.� Optimal: Lists the optimal coloring value of the graph.� DSATUR: Lists the cpu seconds and the number of explored in the search for theoptimal solution in our implementation based on DSATUR.� LPCOLOR: Lists the cpu seconds and the number of evaluated nodes in the branch-and-bound tree for the column generation methodology.The time limit for these experiments was one hour of cpu time. A missing entry in thetables indicates that the problem could not be solved within this time limitation. In somecases, we present averages over 5 instances. When the average is over less than 5 instances(because the others could not be solved within the time limits), we indicate the number ofinstances solved in brackets. We omit any results if the number of solved instances is lessthan 3.The �rst type of coloring instances solved are those on random graphs, G(n; p). Wegenerated graphs with 30, 50 and 70 nodes with edge probabilities .1, .3, .5, .7, and .9. Theresults over average of 5 instances are shown in Table 1.Graph Size GR Bounds Optimal DSATUR LPCOLORnodes edges CL LP LPup time nodes time nodesG(30,.1) 29.8 38.2 3.2 3.0 3.0 3.0 3.0 0.0 27.8 0.0 1.0G(30,.3) 30.0 131.6 5.8 4.6 4.7 5.0 5.0 0.0 38.2 0.4 4.8G(30,.5) 30.0 212.8 7.8 6.0 6.6 7.0 7.0 0.0 41.6 0.2 2.4G(30,.7) 30.0 301.0 10.8 8.8 9.3 9.8 9.8 0.0 64.2 0.0 6.0G(30,.9) 30.0 374.0 15.0 14.4 14.7 14.8 14.8 0.0 43.4 0.0 1.0G(50,.1) 50.0 120.8 4.0 3.0 3.3 4.0 4.0 0.0 57.6 3.2 1.0G(50,.3) 50.0 364.8 7.4 5.2 5.7 6.2 6.4 0.0 942.6 30.2 33.2G(50,.5) 50.0 600.2 11.4 7.6 8.6 9.0 9.4 0.8 46991.0 13.8 50.8G(50,.7) 50.0 814.6 16.2 12.4 13.5 14.2 14.2 1.4 3594.0 1.4 8.8G(50,.9) 50.0 1096.8 24.0 20.6* 21.9 22.2 22.2 2.6 239.6 0.0 1.6G(70,.1) 70.0 235.8 5.0 3.2 3.6 4.0 4.0 0.0 95.0 73.0 15.0G(70,.3) 70.0 736.8 9.8 5.6 6.8 7.6 7.8 7.6 102753.6 585.0 167.6G(70,.5) 70.0 1218.6 14.6 8.4 10.7 11.4 11.6 535.0 3692013.0 35.4 48.4G(70,.7) 70.0 1678.6 19.8 12.6* 16.2 16.6 17.0 408.8 4253916.0 14.2 38.0G(70,.9) 70.0 2173.6 31.4 24.0* 28.1 28.6 28.6 13.4 89594.2 1.0 8.0Table 1: Results on Random Graphs (Average of 5 instances)There are a few things to note for the LPCOLOR results:1. The lower bound provided by rounding up objective value of linear programming solu-tion at the root node of the branch-and-bound tree is usually within 1 of the optimalvalue (this was true for instances we have solved). This is evidence of the strength ofthe formulation. 12

2. Instances with densities in the range of .1{.5 are most di�cult for this method in termsof computation time and the number of nodes evaluated. Also, the GR bound (andhence the starting solution) is not a good bound as the problems get more di�cult.3. The number of evaluated nodes is very small, suggesting the strength of this branchingscheme.4. While 70 nodes does not seem so large, some instances are taking a fair amount of timealready. However, the average timings above can be deceptive. For instance, in manycases, it is usually only one or two problems that raise the average cpu time and theaverage number of evaluated nodes. So more often than not, the problems are solvedin a reasonable amount of time.In comparison, the performance of DSATUR based algorithm indicates that the densitiesof 0.5 and 0.7 are most di�cult both in computational time and the number of explorednodes. Typically, both methods �nd the optimal solution quickly and spend a long time inverifying optimality.The next set of instances come from register allocation. These graphs seem to be quiteeasy for many algorithms: there is an easily found large clique that de�nes the coloringnumber. The results are contained in Table 2. In all cases, the simple heuristic was ableto �nd the correct coloring and column generation quickly proved optimality. Similarly, theDSATUR based algorithm had no di�culties with these problems.Graph Size GR Bounds Optimal DSATUR LPCOLORnodes edges CL LP LPup time nodes time nodesmulsol.i.1 197 3925 49 49 49 49 49 0 149 2 1mulsol.i.2 188 3885 31 31 31 31 31 0 158 1 1mulsol.i.3 184 3916 31 31 31 31 31 0 154 3 1mulsol.i.4 185 3946 31 31 31 31 31 0 155 1 1mulsol.i.5 186 3973 31 31 31 31 31 0 156 1 1zeroin.i.1 211 4100 49 49 49 49 49 0 163 2 1zeroin.i.2 211 3541 30 30 30 30 30 0 182 2 1zeroin.i.3 206 3540 30 30 30 30 30 0 177 2 1inithx.i.1 864 18707 54 54 54 54 54 1 432 31 1inithx.i.2 645 13979 31 31 31 31 31 1 422 19 1inithx.i.3 621 13969 31 31 31 31 31 1 396 14 1fpsol2.i.1 496 11654 65 65 65 65 65 0 811 10 1fpsol2.i.2 451 8691 30 30 30 30 30 2 615 9 1fpsol2.i.3 425 8691 30 30 30 30 30 2 591 16 1Table 2: Register Allocation GraphsOur third set of graphs are geometric graphs. The gn.d graphs are geometric graphswith n nodes and cuto� d; the grn.d graphs are reverse geometric graphs with n nodes andcuto� d. The results are shown in Table 3. The results on these graphs are quite striking in13

Graph Size GR Bounds Optimal DSATUR LPCOLORnodes edges CL LP LPup time nodes time nodesg100.1 99.8 153.2 5.2 5.2 5.2 5.2 5.2 0.0 95.4 0.2 1.0g150.1 150.0 318.8 6.2 6.2 6.2 6.2 6.2 0.0 144.8 1.0 1.0g200.1 200.0 588.2 7.8 7.8 7.8 7.8 7.8 0.0 241.6 4.6 1.0g250.1 250.0 884.0 9.0 8.8 9.0 9.0 9.0 0.0 242.2 4.0 1.0g100.5 100.0 2275.4 30.4 29.2 29.2 29.2 29.2 3.2 29225.8 7.8 11.6g150.5 150.0 4064.8 43.2 38.4 38.4 38.8 38.8 - - 94.8 32.6g200.5 200.0 9335.8 60.8 54.6 54.6 54.6 54.6 156.2(4) 559811.1 (4) 110.0 29.0g250.5 250.0 15041.4 71.0 63.8 64.4 64.4 64.4 - - 475.8 41.4g100.9 100.0 4475.0 67.8 67.4 67.4 67.4 67.4 0.6 449.8 0.1 1.0g150.9 150.0 10137.0 100.0 100.0 100.0 100.0 100.0 4.4 1405.4 1.0 1.0g200.9 200.0 18142.8 134.8 133.2 133.2 133.2 133.2 60.5 (4) 98179.2 (4) 2.4 1.0g250.9 250.0 28841.2 171.4 170.4* 170.6 170.6 170.6 - - 4.2 1.0gr100.1 100.0 4797.0 43.6 43.2* 43.6 43.6 43.6 12.8 57.8 0.0 1.0gr150.1 150.0 10856.2 55.6 53.8* 54.8 54.8 54.8 21.8 110.8 1.0 1.0gr200.1 200.0 19311.8 62.4 58.4* 61.0 61.0 61.2 39.8 26463.6 2.0 2.0gr250.1 250.0 30215.4 66.4 62.0* 64.6 64.6 64.6 50.4 21825.4 5.2 1.0gr100.5 100.0 2654.0 6.8 5.6* 6.0 6.0 6.0 2.0 126.2 0.2 1.0gr150.5 150.0 5946.0 6.8 5.2* 6.4 6.8 6.8 3.0 332.2 1.2 1.0gr200.5 200.0 10551.2 7.0 5.2* 6.4 6.8 6.8 3.8 492.0 2.6 1.0gr250.5 250.0 15934.8 7.2 5.0* 6.7 7.0 7.0 4.8 561.8 6.2 1.4gr100.9 100.0 475.0 3.4 3.2 3.2 3.2 3.2 0.0 97.8 0.0 1.0gr150.9 149.6 1038.0 3.8 3.2 3.3 3.4 3.4 0.2 147.4 0.8 1.0gr200.9 199.6 1757.2 4.0 3.2 3.4 3.6 3.6 1.0 197.6 2.2 1.0gr250.9 249.8 2411.2 4.0 3.4 3.6 3.8 3.8 1.0 247.4 3.4 1.0Table 3: Geometric Graphs (Average of Five Instances)
14

that LPCOLOR provided much more robust results, solving many instances that DSATURwas unable to handle.Finally, Table 4 presents the results for the other graph classes we have experimentedwith. All of these graphs were relatively easy to solve except for the 8�8 (and larger) queenproblems. DSATUR was unable to solve a couple of these queen problems. Mycielski graphsseem to be very di�cult for either method. DSATUR could solve mycielski{5 graph thatLPCOLOR could not even though the starting solution for LPCOLOR was an optimal one.This is clearly because of the large gap between the LP and Optimal values. These gapscontinue to be large even deeper down in the branch-and-bound tree making it di�cult toprove optimality for LPCOLOR. Larger queen and mycielski graphs could not be solved byeither program.Graph Size GR Bounds Optimal DSATUR LPCOLORnodes edges CL LP LPup time nodes time nodesanna 138 493 11 11 11 11 11 0 128 0 1david 87 406 11 11 11 11 11 0 77 0 1homer 561 1629 13 13 13 13 13 1 549 24 1huck 74 301 11 11 11 11 11 0 64 0 1jean 80 254 10 10 10 10 10 0 71 0 1games120 120 638 9 9 9 9 9 0 112 1 1miles250 128 387 8 8 8 8 8 0 121 2 1miles500 128 1170 20 20 20 20 20 0 109 1 1miles750 128 2113 32 31 31 31 31 0 98 1 3miles1000 128 3216 42 42 42 42 42 0 87 0 1miles1500 128 5198 73 73 73 73 73 0 56 1 1queen5.5 25 160 7 5 5 5 5 0 21 0 1queen6.6 36 290 9 6 7 7 7 0 1865 1 4queen7.7 49 476 11 7 7 7 7 0 6849 4 1queen8.8 64 728 12 8 8.4 9 9 - - 19 18queen9.9 81 2112 13 9 9 9 10 - - 515 77queen8.12 96 1368 14 12 12 12 12 0 164 79 42myciel2 5 5 3 2 2.5 3 3 0 4 0 1myciel3 11 20 4 2 2.9 3 4 0 27 0 9myciel4 23 71 5 2 3.2 4 5 0 848 9 303myciel5 47 236 6 2 3.5 4 6 18 378311 - -Table 4: Other Miscellaneous Graphs
15

7 CONCLUSIONSWe have developed an algorithm for coloring based on the independent set formulation. Thesuccess of this algorithm hinges on fast algorithms for �nding maximum weighted indepen-dent sets. It appears that for the instances solved here, the independent set formulation givesa very good lower bound on the number of colors required. In fact, this observation leads to agood heuristic procedure for graphs that are too large or too di�cult to solve exactly. In theheuristic procedure, we do not generate any columns after optimizing the root node linearprogram. Instead, we �nd the best integer solution from among the columns accumulated atthe root node of the branch-and-bound tree. We refer to this restricted program at the rootnode as the restricted integer program (RIP). This type of heuristic has been successfullyused for clustering problems in [17].The strength of this branching method is another important observation. Very few nodesare explored in the branch-and-bound tree. To study this strength, we solved the RIP(without generating additional columns at subsequent nodes of the branch-and-bound tree)by two methods: the Standard method refers to the branching method of �xing a fractionalvariable to 0 or a 1. The New Branching refers to the branching rule developed in this paper.Note that the values obtained by the new branching are not necessarily the same as thatin the standard branching because the new branching does not guarantee �nding the bestpossible solution for RIP without the ability to generate additional columns at each nodeof the resulting tree. The results are shown in Table 5, where we give the results for theG(70,.) graphs including the value of the solutions, the number of nodes evaluated and thecpu time it takes to solve the linear program at the root node as an integer program. Onceagain, these are averaged over �ve instances. The speed with which we solve problems tooptimality seems to be due to the strength of the branching rule, since the time per node isroughly comparable for the two approaches. It is interesting to note that it takes roughlythe same amount of time to solve RIP to optimality with the standard branching rule asit takes LPCOLOR to solve the entire problem to optimality with the new branching rule(Table 1). Density Standard New BranchingValue Nodes sec Value Nodes sec.1 4.8 214.8 117.2 5.2 71.6 46.2.3 8.8 3333.0 500.6 8.8 525.0 119.6.5 12.6 590.0 72.4 12.6 296.0 45.8.7 17.4 79.6 8.4 17.4 51.0 7.8.9 28.6 3.0 0.8 28.6 7.2 1.0Table 5: Solving the restricted integer programImprovements to the column generation implementation would be more robust heuristicsfor the maximumweighted clique problem and more intelligent rules for determining when toterminate the recursion for exactly �nding the MWIS. Also, implementing other branchingrules and studying their e�ciency would be interesting. For example, the following branchingrule could be used: 16

Consider a fractional solution to the linear relaxation of (IS). As before, there exist twosets S1 and S2, and vertices i; j, such that i 2 S1\S2, and j 2 S1 nS2, and at least one of xs1or xs2 is fractional. Earlier we created the subproblems SAME(i,j), and DIFFER(i,j). Toimplement DIFFER(i,j), consider the following: If i is an isolated vertex, there is no reasonto look at DIFFER(i,j): the solution can be no better than SAME(i,j). Generalizing this,if i and j are to di�er and have the solution not be equivalent to SAME(i,j), one of theneighbors of i must receive the same color as j. So, we can create the subproblemsSAME(i1; j)SAME(i2; j)...SAME(ik; j)where fi1; i2; :::; ikg are neighbors of i. This choice of branching ensures that each nodeof the branch-and-bound tree is of similar di�culty and that the depth of the resulting treeis no more than the number of nodes in the graph. This approach however can have theoptimal solution occuring in more than one branches. To prevent that, the DIFFER(i; j)could be implemented as follows:SAME(i1; j)DIFFER(i1; j), SAME(i2; j)DIFFER(i1; j), DIFFER(i2; j), SAME(i3; j)...DIFFER(i1; j), DIFFER(i2; j), ...DIFFER(ik�1; j), SAME(ik; j).When it is not crucial to generate a provably optimal coloring, or when the time availableis insu�cient for our procedure to complete, simple modi�cations can be used to generategood solutions rather quickly. For example, a target value for the coloring can be prespeci�edand column generation at the nodes of the branch-and-bound tree can be stopped as soonas the objective value of the linear program falls below this target value. This can beuseful especially when a good starting solution is already available and one is seeking abetter solution. The branching algorithm can then be terminated as soon as an improvingsolution is found. In table 6, we give results for the G(.,.5) graphs. For these experiments,our algorithm is modi�ed to stop when either a solution that is guaranteed to be within 1of the best possible solution as determined by rounding up the optimal linear programmingobjective value is found or when 100 nodes of the branch-and-bound tree have been explored.Results are averaged over �ve instances in each case. The Initial value is the upper boundcorresponding to the starting solution found by the greedy procedure, the LP bound isobtained by rounding up the linear programming objective value at the root node and thebest solution found with the termination criterion as stated is given by Best Found.Finally, it would be interesting to study the algorithm's performance on the variousclasses of instances in more detail. Random instances seem to be di�cult (at least for somedensities) with graphs as small as 70 nodes. Register allocation graphs seem to be very easy.Geometric graphs seem markedly di�erent whether one places edges for long distances orshort ones. It would be useful to understand where these di�erences come from.17

Size Value TimeSize Initial LP Bound Best Found sec70 16.8 11.4 12.4 18.880 18.2 12.0 13.2 48.290 20.6 13.0 14.2 99.4100 21.6 13.8 15.6 170.2110 22.6 14.6 16.8 248.6120 24.0 15.8 17.6 308.4Table 6: Results when algorithm is terminated earlyReferences[1] Egon Balas and H. Samuelsson. A node covering algorithm. Naval Research LogisticsQuarterly, 24(2):213{233, 1977.[2] Egon Balas and Jue Xue. Minimum weighted coloring of triangulated graphs, withapplication to maximum weight vertex packing and clique �nding in arbitrary graphs.SIAM Journal on Computing, 20(2):209{221, 1991.[3] Egon Balas and Chang Sung Yu. Finding a maximum clique in an arbitrary graph.SIAM Journal on Computing, 15(4):1054{1068, 1986.[4] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savelsbergh,and Pamela H. Vance. Branch-and-Price: Column Generation for Huge Integer Pro-grams. School of Industrial & Systems Engineering, Georgia Institute of Technology,Atlanta, GA 30332-0205, 1994.[5] D. Br�elaz. New Methods to color the vertices of a graph. Communications of the ACM,22:251{256, 1979.[6] R. Carraghan and P. M. Pardalos. An exact algorithm for the maximumclique problem.Operations Research Letters, 9:375{382, 1990.[7] Fred C. Chow and John L. Hennessy. Register allocation by priority{based coloring.In Proceedings of the ACM SIGPLAN 84 Symposium on Compiler Construction, pages222{232, New York, NY, 1984. ACM.[8] Fred C. Chow and John L. Hennessy. The priority{based coloring approach to registerallocation. ACM Transactions on Programming Languages and Systems, 12(4):501{536,1990.[9] Anne Condon. DIMACS Challenge 1994.[10] D. De Werra. An introduction to timetabling. European Journal of Operations Research,19:151{162, 1985. 18

[11] Andreas Gamst. Some lower bounds for a class of frequency assignment problems. IEEETransactions of Vehicular Echnology, 35(1):8{14, 1986.[12] Martin Gardner. The Unexpected Hanging and Other Mathematical Diversions. Simonand Schuster, New York, 1969.[13] Mark Jerrum. Large cliques elude the metropolis process. Random Structures andAlgorithms, 3(4):347{360, 1992.[14] David S. Johnson. Approximation algorithms for combinatorial problems. Journal ofComputer and System Sciences, 9:256{278, 1974.[15] David S. Johnson. Worst{case behavior of graph coloring algorithms. In Proceedings5th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pages513{527, Winnipeg, Canada, 1974. Utilitas Mathematica Publishing.[16] Ellis L. Johnson. Modeling and strong linear programs for mixed integer programming.S.W. Wallace (ed.). Algorithms and Model Formulations in Mathematical Programming,NATO ASI Series 51, 1989.[17] Ellis L. Johnson, Anuj Mehrotra, and George L. Nemhauser. Min-cut clustering. MathProgramming, 62:133-151, 1993.[18] Donald E. Knuth. The Stanford GraphBase. ACM Press, Addison Wesley, New York,1993.[19] S.M. Korman. The graph{coloring problem. In N. Christophides, P. Toth, and C. Sandi,editors, Combinatorial Optimization, 211{235, Wiley, New York, 1979.[20] Bassam N. Khoury and Panos M. Pardalos. An algorithm for �nding the maximumclique on an arbitrary graph. DIMACS Challenge, 1993.[21] M. Kubale and B. Jackowski. A generalized implicit enumeration algorithm for graphcoloring. Communications of the ACM, 28:412{418, 1985.[22] M. Kubale and E. Kusz. Computational experience with implicit enumeration algo-rithms for graph coloring. In M. Nagl and J. Perl, editors, Proceedings of the WG'83International Workshop on Graphtheoretic Concepts in Computer Science, pages 167{176, Linz, 1983. Trauner Verlag.[23] Michael Larsen, James Propp, and Daniel Ullman. The fractional chromatic number ofa graph and a construction of Mycielski. preprint, 1994.[24] Anuj Mehrotra. Constrained Graph Partitioning: Decomposition, Polyhedral Structureand Algorithms. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, 1992.[25] Craig Morgenstern and Harry Shapiro. Coloration neighborhood structures for generalgraph coloring. In First Annual ACM{SIAM Symposium on Discrete Algorithms, 1990.19

[26] J. Mycielski. Sur le coloriage des graphes. Colloquim Mathematiques, 3:161{162, 1955.[27] George L. Nemhauser and Les E. Trotter. Vertex packings: Structural properties andalgorithms. Mathematical Programming, 8:232{248, 1975.[28] B. Pittel. On the probable behaviour of some algorithms for �nding the stability numberof a graph. Mathematical Proceedings of the Cambridge Philosophical Society, 92:511{526, 1982.[29] Martin W.P. Savelsbergh and George L. Nemhauser. Functional description of MINTO,a Mixed INTeger Optimizer. School of Industrial & Systems Engineering, Georgia In-stitute of Technology, Atlanta, GA 30332-0205, 1993.[30] Edward C. Sewell. An Improved Algorithm for Exact Graph Coloring. To appear,DIMACS Series on Discrete Mathematics and Theoretical Computer Science, 1995.[31] P.H. Vance, C. Barnhart, E.L. Johnson, and G.L. Nemhauser. Solving Binary Cut-ting Stock Problems by Column Generation and Branch-and-Bound. ComputationalOptimization and Applications, to appear, 1994.

20

