A COLUMN GENERATION APPROACH
FOR GRAPH COLORING

Anuj Mehrotra Michael A. Trick
Department of Management Science Graduate School of Industrial Administration
School of Business Administration Carnegie Mellon University
University of Miami Pittsburgh, PA 15213-3890
Coral Gables, FL 33124-8237 e-mail: trick+@cmu.edu

e-mail: anuj@nirvana.bus.miami.edu

April 11, 1995

Abstract

We present a method for solving the independent set formulation of the graph col-
oring problem (where there is one variable for each independent set in the graph).
We use a column generation method for implicit optimization of the linear program
at each node of the branch-and-bound tree. This approach, while requiring the solu-
tion of a difficult subproblem as well as needing sophisticated branching rules, solves
small to moderate size problems quickly. We have also implemented an exact graph
coloring algorithm based on DSATUR for comparison. Implementation details and
computational experience are presented.

1 INTRODUCTION

The graph coloring problem is one of the most useful models in graph theory. This problem
has been used to solve problems in school timetabling [10], computer register allocation [7, §],
electronic bandwidth allocation [11], and many other areas. These applications suggest that
effective algorithms for solving the graph coloring problem would be of great importance.
Despite this relevance, there are relatively few methods available for solving graph col-
oring instances exactly. Those that are available ([21, 22]) are limited to solving small
instances. In contrast, heuristic techniques have been designed that solve instances with
hundreds or thousands of vertices ([14, 15, 25]) at the cost of regularly suboptimal solutions.
We suggest an approach based on an integer programming formulation of the graph
coloring problem. This formulation, called the independent set formulation, has a variable
for each independent set in the graph. While this formulation is well known, the enormous
number of variables has apparently discouraged use of it as a computational method. We
show that it is possible to develop an effective column generation technique for this problem

while still ensuring integrality with appropriate branching rules. This method is tested on a
variety of instances and is shown to be robust and more effective than previous techniques
in solving moderately sized instances.

In section 2, we develop the independent set formulation of the graph coloring problem
and discuss various advantages of the formulation. In section 3, we discuss techniques for
generating columns in this formulation and outline one method for such generation. In
section 4, we develop alternative branching rules and discuss their characteristics. In section
5, we describe our implementation details. In section 6, we present the computational results,
and in the final section, we give some directions for future exploration.

2 A COLUMN GENERATION MODEL

Let GG = (V, E) be an undirected graph on V, the set of vertices, with £ being the set of of
edges. Let |V|=n and |E| = m.

A coloring of G is an assignment of labels to each vertex such that the endpoints of any
edge have different labels. A minimum coloring of GG is a coloring with the fewest different
labels among all possible colorings.

An independent set of (G is a set of vertices such that there is no edge in I/ connecting any
pair. Clearly, in any coloring of (7, all vertices with the same label comprise an independent
set. A maximal independent set is an independent set that is not strictly included in any
other independent set.

The problem of finding a minimum coloring in a graph can be formulated in many ways.
For instance, the problem of determining if K colors suffice can be formulated as follows.
Let 21,2 € V, 1 <k < K be a binary variable that is 1 if vertex ¢ is assigned label & and
0 otherwise. The problem is then to determine if the following system (denoted (VC) for
vertex—color) has a feasible solution:

z + o <01 V(7)€ E, Yk
k
Tie € {0,1}.

The minimum graph coloring problem can then be solved by doing binary search on
K to find the minimum value for which the above system has a feasible solution. This
formulation, while correct, is difficult to use in practice. One obvious problem is the size of
the formulation. Since K can be as large as n, the formulation can have up to n* variables
and nm 4 n constraints. Given the need to enforce integrality, this formulation becomes
computationally intractable for all except the smallest of instances. This is especially true
because the linear programming relaxation is extremely fractional. To see this, note that x;;
= 1/K for every 1, k is feasible whenever K > 2.

A second, less obvious, problem involves the symmetry of the formulation. The variables
for each k£ appear in exactly the same way. This means that it is difficult to enforce integrality
in one variable without problems showing up in the other variables because any solution to
the linear relaxation has an exponential number (as a function of K) of representations.
Therefore, branching on z;; to take on integral values does little good because it results in
another representation of the same fractional solution in which x;, takes on the old value of
;1 and vice-versa.

We consider a formulation with far fewer constraints that does not exhibit the same
symmetry problems as our first formulation. Let S be the set of all maximal independent
sets of G. We create a formulation with binary variables x, for each s € S. x, = 1 implies
that independent set s will be given a unique label, while 3 = 0 implies that the set does
not require a label. The minimum coloring problem is then the following (denoted (IS)):

Minimize g T
S

Subject to Z s > 1 VieV
{si€S}

r, € {0,1} Vsebs.

This formulation can also be obtained from the first formulation by using a suitable de-
composition scheme as explained in [16, 24] in the context of general mixed integer programs.
The formulation (IS) has only one constraint for each vertex, but can have a tremendous
number of variables. Note that a feasible solution to (IS) may assign multiple labels to a
vertex. This can be corrected by using any one of the multiple labels as the label for the
vertex. The alternative would be to allow non—maximal sets in S and to require equalities
in (IS). In view of the ease of correcting the problem versus the great increase in problem
size that would result from increasing S, we choose the formulation given.

This formulation exhibits much less symmetry than (VC): vertices are combined into
independent sets and forcing an independent set to 0 means that no color can correspond
to that independent set. Furthermore, it is easy to show [24] that the bound provided by
the linear relaxation of (IS) will at least be as good as the bound provided by the linear
relaxation of (VC).

The fact remains, however, that (IS) can have far more variables than can be reasonably
attacked directly. We resolve this difficulty by using only a subset of the variables and gener-
ating more variables as needed. This technique, called column generation, is well known for
linear programs and has recently emerged as a viable technique for some integer program-
ming problems [4, 17]. The need to generate dual variables (which requires something like
linear programming) while still enforcing integrality makes column generation procedures
nontrivial for integer programs. The procedures need to be suitably developed and their
effectiveness is usually dependent on cleverly exploiting the characteristics of the problem.

The following is a brief overview of the column generation technique in terms of (IS).
Begin with a subset S of independent sets. Solve the linear relaxation (replace the integrality

constraints on x, with nonnegativity) of (IS) restricted to s € S. This gives a feasible solution
to the linear relaxation of (IS) and a dual value m; for each constraint in (IS). Now, determine
if it would be useful to expand S. This is done by solving the following weighted independent
set problem (MWIS):

Mazximize Z T2
eV

Subjectto z + z; < 1 V(i,7)€E

z € {0,1} VieV.

If the optimal solution to this problem is more than 1, then the z; with value 1 correspond
to an independent set that should be added to S. If the optimal value is less than or equal
to 1, then there exist no improving independent sets: solving the linear relaxation of (IS)
over the current S is the same as solving it over S.

This process is repeated until there is no improving independent set. If the resulting
solution to the linear relaxation of (IS) has z, integer for all s € S, then that corresponds
to an optimal solution to (1.5) over S. When some of the x; are not integer, though, we are
faced with the problem of enforcing integrality.

To complete this algorithm, then, we need to do two things. First, since (MWIS) is
itself a difficult problem, we must devise techniques to solve it that are sufficiently fast to
be able to be used over and over. Second, we must find a way of enforcing integrality if
the solution to the linear relaxation of (IS) contains fractional values. Standard techniques
of enforcing integrality (cutting planes, fixing variables) make it difficult or impossible to
generate improving independent sets. We discuss these two problems in the next two sections.

3 SOLVING THE MAXIMUM WEIGHTED INDE-
PENDENT SET PROBLEM

The maximum weighted independent set problem is a well studied problem in graph theory
and combinatorial optimization (though often under the name of maximum weighted clique,
where a clique is an independent set in the complement of a graph). Various solution
approaches have been tried, including implicit enumeration [6], integer programming with
branch and bound [2, 3], and integer programming with cutting planes [1, 27]. In addition a
number of heuristics have been developed [28] and combined with general heuristic methods
such as simulated annealing [13]. In this section, we outline a simple recursive algorithm
based on the work of [20] and describe a simple greedy heuristic that can be used to reduce
the need for the recursive algorithm.

The basic algorithm for finding a maximum weight independent set (MWIS) is based on
the following insight: Given a graph G and a vertex ¢ € V', the MWIS in G is either the
MWIS in G restricted to V/{i} or it is ¢ together with the MWIS in AN(z), where AN(7) is

the anti—neighbor set of i: the set of all vertices j in V where there is not (¢,75) € E. This
insight, first examined by [20] for the unweighted case, leads to the following recursion which
can be turned into a full program:

MWIS(G U {i}) = max(MWIS(G),MWIS({i} U AN(:))).

While this approach is reasonably effective for not—too—sparse graphs, it can be improved
by appropriately ordering the vertices. The following have been shown to be effective in
reducing the computational burden of the recursion:

1. Begin with a good MWIS. Note that if G itself is an independent set then adding an
independent vertex to it will require the resolution of the current MWIS. This can be
avoided by starting with a good MWIS. Then adding a vertex will necessarily involve
solving a new problem.

2. Order the remaining vertices in order of degree from lowest to highest. During the final
stages of the recursion, it is important to keep the anti-neighbor set small in order to
solve the MWIS on as small a graph as possible. Since vertices with high degree have
small anti—neighbor sets, those should be saved for the end.

3. Try to determine if a branch of the recursion can possibly return a MWIS better than
the incumbent. For instance, if the total weight of the set examined is less than the
incumbent, the incumbent is necessarily better, so it is unnecessary to continue the
recursion.

4. Use a faster code for smaller problems. It appears that a weighted version of the method
of Carraghan and Pardalos [6] is faster for smaller problems, particularly when it is
able to terminate when it is clear that no independent set is available that is better
than the incumbent. In our tests, which use relatively small graphs, we use a variant
of Carraghan and Pardalos for all except the first level of recursions, which echos the
results of Khoury and Pardalos in the unweighted case.

In the context of our column generation technique, it is not critical that we get the best
(highest weight) maximal independent set: it is sufficient to get any set with weight over
1. This suggests that a heuristic approach for finding an improving column may suffice in
many cases. It is only when it is necessary to prove that no set exists with weight over 1
(or when the heuristics fail) that it is necessary to resort to the recursion. There are many
heuristics for weighted independent sets. The simplest is the greedy heuristic: begin with
(one of) the highest weighted vertices. Add vertices in non-increasing order of their weight
making certain that the resulting set remains an independent set.

This heuristic, in addition to being simple, is very fast, and seems to work reasonably
well. The resulting independent set can either be added directly to (IS) (if it has value over
1) or can be used as a starting point for the recursion. We will examine the value of this
heuristic in the computational results.

4 BRANCHING RULE

A difficult part about using column generation for integer programs is the development of
branching rules to ensure integrality. Rules that are appropriate for integer programs where
the entire set of columns is explicitly available do not fit in well with restricted integer
programs where the columns are generated by implicit techniques. Consider, for instance,
the rule of branching on a fractional variable, where the variable is set to 1 in one subproblem
and set to 0 in the other. The former subproblem causes no problem for (IS): setting an
independent set variable to 1 corresponds to applying a single label to those vertices. Those
vertices can then be removed from the graph. The other subproblem is more difficult. Setting
a variable to 0 corresponds to not permitting the use of that independent set. How can this
information be passed to the subproblem (that generates maximum weight independent
sets)? What if the maximum weight independent set is set to 07 How can it be checked if
there is another independent set with value more than 17 This seems to involve finding the
second, third, and so on highest weight independent sets. This is a much more expensive
operation than simply finding the highest weight set (consider how complicated the recursion
in the previous section would have to be).

Cutting planes, another technique for forcing integrality, are also difficult to fit into a
column generation framework. For instance, consider the graph in Figure 1.

Q.

Figure 1: Star Graph

Such a graph has maximal independent sets {a,b},{b,c},{c,d},{d, e} and {e,a}. Ap-
plying weights of 1/2 to each set results in a feasible solution to the linear relaxation of (IS),
with objective 2.5. We would like to add a constraint that it takes three independent sets
to cover these vertices. While it is easy to add such a constraint to (IS), it is not clear as to
how this can be accomplished while not complicating the subproblem.

Our approach to the integrality problem is to use a branch-and-bound method with-
out increasing the complexity of the subproblems. We accomplish this by devising special
branching rules that ensure that the subproblem to be solved for each branch is itself a
graph coloring problem without any additional constraints and can be solved by our column

generation methodology. Additionally, the optimal integer solution to (IS) lies in exactly
one branch. This implies that the algorithm we use for the maximum weight independent
set can be used to generate columns for the problem at every node of the branch-and-bound
tree.

Define the following operations on a graph coloring problem: SAME(S) requires that the
set S all have the same label, and DIFFER(¢,j) requires that nodes ¢ and j have different
labels. These operations can be implemented by changing the graph on which the coloring
is done. SAME(S) can be enforced by collapsing the set S into a single vertex. A vertex
outside of S has an edge to it if and only if it has an edge to any member of S in the original
graph. DIFFER(¢,7) is even easier: it is only necessary to add an edge between i and j.

Consider a fractional solution to the linear relaxation of (IS). It is easy to see that there
exist two sets S7 and S, and vertices ¢, j, such that ¢ € S; NSy, and 7 € S7\ 52, and at least
one of x,, or x,, is fractional. Create the subproblems:

DIFFER(7,7)

SAME(4,j).

Any feasible coloring must occur in exactly one of the two sets. Furthermore, the in-
dependent sets that make up the current fractional solutions are not feasible for the two
subproblems. This approach has the advantage of creating only 2 subproblems like tradi-
tional branching schemes.

5 IMPLEMENTATION DETAILS

5.1 Column Generation Methodology

The methodology has been implemented on a DEC ALPHA 3000 (Model 300) workstation
using CPLEX version 2.1 as the linear programming solver and MINTO version 1.5 [29] as
the integer programming solver.

Currently, we generate a feasible initial coloring using a greedy heuristic (essentially
applying the greedy MWIS heuristic repeatedly until all nodes are colored). This gives us
an initial solution to the coloring problem as well as a number of columns to add to our
linear program. We then generate columns to improve the linear program. The following
discussion on generation of columns to improve the linear program is valid at each node of
the branch-and-bound tree.

5.1.1 Improving the Linear Program

Improving Column As mentioned earlier, any solution to the MWIS with value greater
than 1 represents an improving column for the linear program. In our current implementa-
tion, we set a target to 1.1 and our MWIS algorithm either returns the first such solution
it finds, failing which, it finds the exact solution. We have also experimented with changing
this target value to a higher number initially (an approach to find a good set of columns as
fast as possible) and then decreasing its value later on in the column generation. This has
mixed results. While, it tends to optimize the linear program at any node of the branch-
and-bound tree faster, the resulting number of nodes to explore rises. We have noticed that

the effort required to solve some difficult problems can be substantially reduced by suitably
altering this target value.

Ordering the Nodes The order in which the nodes are to be considered can be specified
in our MWIS algorithm. We have found that ordering the nodes in order of nonincreasing
weights or in order of nonincreasing degree are not as efficient as ordering them by considering
both at the same time. In our experiments we order the nodes in nonincreasing values of
square root of the degree of the node times the weight of the node.

Column Management Another approach to optimizing the linear program faster is to
generate several columns at every iteration rather than a single column [4]. For example, one
could use improvement algorithms that take existing columns with reduced cost equal to zero
and try to construct columns that might improve the linear program. In our experiments,
we generated more candidates for improving independent sets by deleting a node from an
improving independent set that was found by the MWIS procedure, and constructing other
independent sets from the remaining set. This approach did not improve our results: while
the total number of iterations of column generation went down, the time to generate and
optimize the linear programs between iterations offset any savings in time because of reduced
number of iterations. When the number of columns gets large, it is useful to implement
column management schemes that either delete the nonbasic variables with very negative
reduced costs or keep them in a temporary pool that is checked every few iterations for any
improving columns. Since, the total number of columns generated in our experiments was
modest at best, we did not implement such schemes.

Early Branching At any node in the branch-and-bound tree, when there are more im-
proving independent sets, we either get an integer solution (representing an upper bound
on the number of colors required) or branch using method 1 if the linear program is frac-
tional. In the latter case, the linear programming solution provides a lower-bound on the
best possible coloring available from that node. However, in our implementation, we do not
wait for the linear program at a node to be optimized before branching. Rather, we optimize
the linear program only at the root node of the branch-and-bound tree to obtain a lower
bound on the number of colors required. Then at any other node of the branch-and-bound
tree, we stop generating columns as soon as the restricted linear programming relaxation
objective value goes below the best possible coloring value determined by rounding up the
objective value at the root node. This tended to reduce the number of columns generated
and resulted in exploration of fewer nodes in our experiments. The resulting decrease in
overall computation time by not solving the linear programming relaxation to optimality
before branching has also been experienced on other combinatorial problems [4, 31].

5.1.2 Branching Methodology

In our implementation, we use a depth-first-search(DFS) strategy in choosing the node to
evaluate. We have also experimented with the idea of choosing the node with the best-bound
and of switching from a DFS strategy to the best-bound strategy after updating the upper

bound (from the one provided by the initial solution). The DFS strategy seems to work
best in our implementation, both from a point of view of number of nodes explored and in
cpu-time overall.

For implementing our branching, we first determine the most fractional column (sq).
Then we find the first row ¢ covered by this column and determine another column(sz) that
covers row ¢. Then we find row j such that only one of the columns sy or sy cover row 5. We
have also experimented with choosing the first fractional column as s; instead of finding the
most fractional one. This tends to increase the overall effort.

5.2 DSATUR

In addition to our column generation approach to graph coloring, we have implemented an
exact graph coloring algorithm based on the DSATUR algorithm first developed by Brélaz
[5]. We will use this algorithm as a comparison code to determine the effectiveness of column
generation.

DSATUR works by dividing a graph coloring instance into a series of subproblems. A
subproblem in DSATUR is a partial coloration of the graph. At each step of the algorithm,
there is an upper bound UB on the number of colors required for the graph. If a subproblem
uses k colors, and k is at least UB, clearly the subproblem can be fathomed. Alternatively,
if every node in the graph is colored, and k& < UB, then a better coloring has been found
and UB can be set to k.

If the graph is not completely colored, and the number of colors used is less than UB, new
subproblems are created. Some uncolored node ¢ is chosen for branching. For each feasible
color for ¢ (out of the k used in the subproblem), a new subproblem is created assigning ¢
that color. In addition, a subproblem is created with i receiving color k + 1.

The algorithm terminates when there are no subproblems left. At this point, UB give
the coloring number of the graph.

The choice of branch node ¢ can have a large effect on the algorithm. In a heuristic, Brelez
[5] suggests choosing the node adjacent to the largest number of differently colored nodes.
This has the effect of reducing the number of subproblems created at each branch. Ties can
be broken by choosing a node with highest degree in the uncolored subgraph. Korman [19]
recommended using this within the optimization routine, and Kubale and Jackowski [21]
confirm that this is an effective choice in their experiment.

A further modification is suggested by Sewell [30]. If the first k nodes colored form a
clique, then it is clear that they will never be recolored. This suggests that it would be useful
to find a maximum clique in the graph and color those nodes first. This approach is a large
improvement when the clique value and the coloring number of a graph are close, and seems
a good idea for many instances.

Our version of DSATUR attempts to find the maximum clique in the graph using the
unweighted versions of the clique finding algorithms previously presented. Since it is not
critical to prove the optimality of the clique, we terminate the clique search once 10,000
clique subproblems have been generated. In the vast majority of the instances we solved,
the optimal clique was found in far fewer subproblems.

The rest of the nodes are dynamically ordered in terms of the number of adjacent colors

and subproblems are created as in the basic DSATUR algorithm. Subproblems are solved
in a depth-first search manner.

6 COMPUTATIONAL RESULTS

6.1 Instance Description

In our computational experiments, we use instances drawn from a large number of sources.
Our goal is to determine the robustness of the approaches. For some of these graphs, the
coloring problem has no real interpretation. We use these graphs as examples of structured
graphs, rather than just experimenting on random graphs. Here we briefly describe the
instance classes.

Random Graphs Random graphs are ubiquitous in computational experiments for graph
coloring. G/(n,p) is formed by generating a graph on n vertices, where each edge occurs
independently with probability p.

Register Graphs One standard application of graph coloring is register allocation. In
this problem, a compiler is attempting to assign variables to registers. Two variables can
be assigned to the same register if they are not both required at the same time in a code
fragment. Condon [9] has developed a program that takes code fragments and generates the
corresponding graph coloring problem.

Geometric Graphs A different type of random graph is created by generating 2n random
numbers in the range (0,1) and treating pairs number as coordinates in the Euclidean unit
square. A node is placed at each coordinate, and two nodes are connected by an edge if and
only if the Euclidean distance between them is less than some cutoff value. Alternatively,
a reverse geometric graph results when edges correspond to nodes that are more than some
distance apart.

Book Graphs Given a work of literature, a graph is created where each node represents
a character. Two nodes are connected by an edge if the corresponding characters encounter
each other in the book. Knuth [18] creates the graphs for five classic works: Tolstoy’s
Anna Karenina (anna), Dicken’s David Copperfield (david), Homer’s lliad (homer), Twain’s
Huckleberry Finn (huck), and Hugo’s Les Misérables (jean).

Game Graphs A graph representing the games played in a college football season can
be represented by a graph where the nodes represent each college team. Two teams are
connected by an edge if they played each other during the season. Knuth [18] gives the
graph for the 1990 college football season.

10

Miles Graphs These graphs are similar to geometric graphs in that nodes are placed in
space with two nodes connected if they are close enough. These graphs, however, are not
random. The nodes represent a set of United States cities and the distance between them is
given by by road mileage from 1947. These graphs are also due to Kuth [18].

Queen Graphs Given an n by n chessboard, a queen graph is a graph on n? nodes, each
corresponding to a square of the board. Two nodes are connected by an edge if the corre-
sponding squares are in the same row, column, or diagonal. Unlike some of the other graphs,
the coloring problem on this graph has a natural interpretation: Given such a chessboard,
is it possible to place n sets of n queens on the board so that no two queens of the same set
are in the same row, column, or diagonal? The answer is yes if and only if the graph has
coloring number n. Gardner [12] states without proof that this is the case if and only if n
is not divisible by either 2 or 3. In all cases, the maximum clique in the graph is no more
than n, and the coloring value is no less than n.

Mycielski Graphs Given a graph G with vertex set {vq,vs,...,v,}, we can get the My-
cielski transformation [26] p(G') of G by creating a graph with vertex set

{Z1, 20, o T Y1, Y2y e o e s Yy 2)

and edges x;x; if and only if v;u; € E(G), a;y; if and only if v,v; € F(G) and y;z for all
i. Larson, Propp, and Ullman [23] show that as long as G has at least one edge, the size of
the largest clique in the graph is not affected by this transformation. They also show that
the coloring number goes up by one. Finally, they show that if the solution to the linear
relaxation of the coloring problem (IS) for G is k, then the corresponding solution for (&)
is k+ 1/k.

If we let GGy be the graph with two nodes and a single edge, and recursively define
Gliy1 = pu(G;), then each G is triangle—free (the maximum clique is 2), has coloring number
1+ 1, and has linear relaxation of IS value in between those two values. As such, these graphs
seem difficult to solve since neither the clique nor the linear relaxation of IS can provide tight
bounds.

6.2 Summary of Results

The results on various coloring instances are summarized in Tables 1- 4. The following
results are presented:

o Size: Lists the number of nodes and the number of edges in the graph.

o GR: The value of the feasible coloring returned by the greedy heuristic. This heuristic
generates the starting solution for LPCOLOR, the column generation based procedure.

e Bounds: These provide the lower bounds on the optimal coloring value for the graph.
CL represents the bound provided by the size of the maximum clique in the graph.
When the maximum clique used for providing the CL bound is not confirmed to be
maximum, an asterisk is placed to indicate that. The LP lower bound is the value of

11

the optimal linear programming objective value at the root node of the branch-and-
bound tree in our methodology and LP,, is the lower bound provided by rounding up
the LP bound.

e Optimal: Lists the optimal coloring value of the graph.

e DSATUR: Lists the cpu seconds and the number of explored in the search for the
optimal solution in our implementation based on DSATUR.

e LPCOLOR: Lists the cpu seconds and the number of evaluated nodes in the branch-
and-bound tree for the column generation methodology.

The time limit for these experiments was one hour of cpu time. A missing entry in the
tables indicates that the problem could not be solved within this time limitation. In some
cases, we present averages over 5 instances. When the average is over less than 5 instances
(because the others could not be solved within the time limits), we indicate the number of
instances solved in brackets. We omit any results if the number of solved instances is less

than 3.

The first type of coloring instances solved are those on random graphs, G(n,p). We
generated graphs with 30, 50 and 70 nodes with edge probabilities .1, .3, .5, .7, and .9. The

results over average of 5 instances are shown in Table 1.

Graph Size GR Bounds Optimal DSATUR LPCOLOR
nodes edges CL LP LP, time nodes | time nodes
G(30,.1) 29.8 38.2 | 3.2 3.0 3.0 3.0 3.0 0.0 27.8 0.0 1.0
G(30,.3) 30.0 1316 | 5.8 4.6 4.7 5.0 5.0 0.0 38.2 0.4 4.8
G(30,.5) 30,0 2128 | 7.8 6.0 6.6 7.0 7.0 0.0 41.6 0.2 2.4
G(30,.7) 30.0 301.0 | 10.8 8.8 9.3 9.8 9.8 0.0 64.2 0.0 6.0
G(30,.9) 30.0 374.0 | 15.0 | 14.4 147 148 14.8 0.0 43.4 0.0 1.0
G(50,.1) 50.0 120.8 | 4.0 3.0 3.3 4.0 4.0 0.0 57.6 3.2 1.0
G(50,.3) 50.0 364.8 | 7.4 5.2 5.7 6.2 6.4 0.0 942.6 | 30.2 33.2
G(50,.5) 50.0 600.2 | 114 76 86 9.0 9.4 0.8 46991.0 | 13.8 50.8
G(50,.7) 50.0 814.6 | 16.2 | 124 13.5 14.2 14.2 1.4 3594.0 1.4 8.8
G(50,.9) 50.0 1096.8 | 24.0 | 20.6* 21.9 22.2 22.2 2.6 239.6 0.0 1.6
G(70,.1) 70.0 2358 | 5.0 32 36 4.0 4.0 0.0 95.0 | 73.0 15.0
G(70,.3) 70.0 736.8 | 9.8 5.6 6.8 7.6 7.8 7.6 102753.6 | 585.0 167.6
G(70,.5) 70.0 1218.6 | 14.6 8.4 107 114 11.6 | 535.0 3692013.0 | 35.4 48.4
G(70,.7) 70.0 1678.6 | 19.8 | 12.6* 16.2 16.6 17.0 | 408.8 4253916.0 | 14.2 38.0
G(70,.9) 70.0 2173.6 | 31.4 | 24.0%* 28.1 28.6 28.6 | 13.4 89594.2 1.0 8.0

Table 1: Results on Random Graphs (Average of 5 instances)

There are a few things to note for the LPCOLOR results:

1. The lower bound provided by rounding up objective value of linear programming solu-
tion at the root node of the branch-and-bound tree is usually within 1 of the optimal
value (this was true for instances we have solved). This is evidence of the strength of
the formulation.

12

2. Instances with densities in the range of .1-.5 are most difficult for this method in terms
of computation time and the number of nodes evaluated. Also, the GR bound (and
hence the starting solution) is not a good bound as the problems get more difficult.

3. The number of evaluated nodes is very small, suggesting the strength of this branching
scheme.

4. While 70 nodes does not seem so large, some instances are taking a fair amount of time
already. However, the average timings above can be deceptive. For instance, in many
cases, 1t is usually only one or two problems that raise the average cpu time and the
average number of evaluated nodes. So more often than not, the problems are solved
in a reasonable amount of time.

In comparison, the performance of DSATUR based algorithm indicates that the densities
of 0.5 and 0.7 are most difficult both in computational time and the number of explored
nodes. Typically, both methods find the optimal solution quickly and spend a long time in
verifying optimality.

The next set of instances come from register allocation. These graphs seem to be quite
easy for many algorithms: there is an easily found large clique that defines the coloring
number. The results are contained in Table 2. In all cases, the simple heuristic was able
to find the correct coloring and column generation quickly proved optimality. Similarly, the

DSATUR based algorithm had no difficulties with these problems.

Graph Size GR Bounds Optimal | DSATUR LPCOLOR
nodes edges CL LP LP, time nodes | time nodes

mulsol.i.1 197 3925 | 49| 49 49 49 49 0 149 2 1
mulsol.i.2 188 3885 | 31| 31 31 31 31 0 158 1 1
mulsol.i.3 184 3916 | 31| 31 31 31 31 0 154 3 1
mulsol.i.4 185 3946 | 31| 31 31 31 31 0 155 1 1
mulsol.i.5 186 3973 31| 31 31 31 31 0 156 1 1
zeroin.i.l 211 4100 | 49 | 49 49 49 49 0 163 2 1
zeroin.i.2 211 3541 30| 30 30 30 30 0 182 2 1
zeroin.i.3 206 3540 | 30| 30 30 30 30 0 177 2 1
inithx.i.1 864 18707 | 54 | 54 54 54 54 1 432 31 1
inithx.i.2 645 13979 | 31| 31 31 31 31 1 422 19 1
inithx.i.3 621 13969 | 31| 31 31 31 31 1 396 14 1
fpsol2.i.1 496 11654 | 65 | 65 65 65 65 0 811 10 1
fpsol2.i.2 451 8691 | 30 | 30 30 30 30 2 615 9 1
fpsol2.i.3 425 8691 | 30| 30 30 30 30 2 591 16 1

Table 2: Register Allocation Graphs
Our third set of graphs are geometric graphs. The gn.d graphs are geometric graphs

with n nodes and cutoff d; the grn.d graphs are reverse geometric graphs with n nodes and
cutoff d. The results are shown in Table 3. The results on these graphs are quite striking in

13

Graph Size GR Bounds Optimal DSATUR LPCOLC
nodes edges CL LP LP, time nodes | time no
g100.1 99.8 153.2 5.2 5.2 5.2 5.2 5.2 0.0 95.4 0.2
gl50.1 | 150.0 318.8 6.2 6.2 6.2 6.2 6.2 0.0 144.8 1.0
g200.1 | 200.0 588.2 7.8 7.8 7.8 7.8 7.8 0.0 241.6 4.6
g250.1 | 250.0 884.0 9.0 8.8 9.0 9.0 9.0 0.0 242.2 4.0
g100.5 | 100.0 22754 | 304 29.2 29.2 292 29.2 3.2 29225.8 7.8]
gl50.5 | 150.0 4064.8 | 43.2 38.4 38.4 388 38.8 - - 948
g200.5 | 200.0 9335.8 | 60.8 54.6 54.6 54.6 54.6 | 156.2(4) 559811.1 (4) | 110.0 -
g250.5 | 250.0 15041.4 | 71.0 63.8 64.4 644 64.4 - - | 4758 ¢
g100.9 | 100.0 4475.0 | 67.8 67.4 674 674 67.4 0.6 449.8 0.1
g150.9 | 150.0 10137.0 | 100.0 | 100.0 100.0 100.0 100.0 4.4 1405.4 1.0
2200.9 | 200.0 18142.8 | 134.8 | 133.2 133.2 133.2 133.2 | 60.5 (4) 98179.2 (4) 2.4
g250.9 | 250.0 28841.2 | 171.4 | 170.4* 170.6 170.6 170.6 - - 4.2
gr100.1 | 100.0 4797.0 | 43.6 | 43.2% 43.6 43.6 43.6 12.8 57.8 0.0
gr150.1 | 150.0 10856.2 | 55.6 | 53.8% 54.8 54.8 54.8 21.8 110.8 1.0
gr200.1 | 200.0 19311.8 | 62.4| 58.4* 61.0 61.0 61.2 39.8 26463.6 2.0
gr250.1 | 250.0 30215.4 | 66.4 | 62.0% 64.6 64.6 64.6 50.4 21825.4 5.2
gr100.5 | 100.0 2654.0 6.8 5.6* 6.0 6.0 6.0 2.0 126.2 0.2
gr150.5 | 150.0 5946.0 6.8 5.2% 6.4 6.8 6.8 3.0 332.2 1.2
gr200.5 | 200.0 10551.2 7.0 5.2% 6.4 6.8 6.8 3.8 492.0 2.6
gr250.5 | 250.0 15934.8 7.2 5.0% 6.7 7.0 7.0 4.8 561.8 6.2
gr100.9 | 100.0 475.0 3.4 3.2 3.2 3.2 3.2 0.0 97.8 0.0
gr150.9 | 149.6 1038.0 3.8 3.2 3.3 3.4 3.4 0.2 147.4 0.8
gr200.9 | 199.6 1757.2 4.0 3.2 3.4 3.6 3.6 1.0 197.6 2.2
gr250.9 | 249.8 2411.2 4.0 3.4 3.6 3.8 3.8 1.0 2474 3.4

Table 3: Geometric Graphs (Average of Five Instances)

14

that LPCOLOR provided much more robust results, solving many instances that DSATUR
was unable to handle.

Finally, Table 4 presents the results for the other graph classes we have experimented
with. All of these graphs were relatively easy to solve except for the 8x8 (and larger) queen

problems. DSATUR was unable to solve a couple of these queen problems. Mycielski graphs
seem to be very difficult for either method. DSATUR could solve mycielski—5 graph that
LPCOLOR could not even though the starting solution for LPCOLOR was an optimal one.
This is clearly because of the large gap between the LP and Optimal values. These gaps
continue to be large even deeper down in the branch-and-bound tree making it difficult to

prove optimality for LPCOLOR. Larger queen and mycielski graphs could not be solved by
either program.

Graph Size GR Bounds Optimal DSATUR LPCOLOR
nodes edges CL LP LP, time nodes | time nodes

anna 138 493 | 11| 11 11 11 11 0 128 0 1
david 87 406 | 11| 11 11 11 11 0 7 0 1
homer 561 1629 | 13 | 13 13 13 13 1 549 24 1
huck 74 301 | 11| 11 11 11 11 0 64 0 1
jean 80 254 | 10| 10 10 10 10 0 71 0 1
games120 120 638 9 9 9 9 9 0 112 1 1
miles250 128 387 8 8 8 8 8 0 121 2 1
miles500 128 1170 | 20| 20 20 20 20 0 109 1 1
miles750 128 2113 | 32| 31 31 31 31 0 98 1 3
miles1000 128 3216 | 42| 42 42 42 42 0 87 0 1
miles1500 128 5198 | 73| 73 73 73 73 0 56 1 1
queenb.5 25 160 7 5 5 5 5 0 21 0 1
queen6.6 36 290 9 6 7 7 7 0 1865 1 4
queen’.7 49 476 | 11 7 7 7 7 0 6849 4 1
queend.8 64 728 | 12 8 84 9 9 - - 19 18
queen9.9 81 2112 | 13 9 9 9 10 - - | 515 77
queen8.12 96 1368 | 14| 12 12 12 12 0 164 79 42
myciel2 5 5 3 2 25 3 3 0 4 0 1
myciel3 11 20 4 2 29 3 4 0 27 0 9
mycield 23 71 5 2 3.2 4 5 0 848 9 303
myciel5 47 236 6 2 35 4 6 18 378311 - -

Table 4: Other Miscellaneous Graphs

15

7 CONCLUSIONS

We have developed an algorithm for coloring based on the independent set formulation. The
success of this algorithm hinges on fast algorithms for finding maximum weighted indepen-
dent sets. It appears that for the instances solved here, the independent set formulation gives
a very good lower bound on the number of colors required. In fact, this observation leads to a
good heuristic procedure for graphs that are too large or too difficult to solve exactly. In the
heuristic procedure, we do not generate any columns after optimizing the root node linear
program. Instead, we find the best integer solution from among the columns accumulated at
the root node of the branch-and-bound tree. We refer to this restricted program at the root
node as the restricted integer program (RIP). This type of heuristic has been successfully
used for clustering problems in [17].

The strength of this branching method is another important observation. Very few nodes
are explored in the branch-and-bound tree. To study this strength, we solved the RIP
(without generating additional columns at subsequent nodes of the branch-and-bound tree)
by two methods: the Standard method refers to the branching method of fixing a fractional
variable to 0 or a 1. The New Branching refers to the branching rule developed in this paper.
Note that the values obtained by the new branching are not necessarily the same as that
in the standard branching because the new branching does not guarantee finding the best
possible solution for RIP without the ability to generate additional columns at each node
of the resulting tree. The results are shown in Table 5, where we give the results for the
G(70,.) graphs including the value of the solutions, the number of nodes evaluated and the
cpu time it takes to solve the linear program at the root node as an integer program. Once
again, these are averaged over five instances. The speed with which we solve problems to
optimality seems to be due to the strength of the branching rule, since the time per node is
roughly comparable for the two approaches. It is interesting to note that it takes roughly
the same amount of time to solve RIP to optimality with the standard branching rule as
it takes LPCOLOR to solve the entire problem to optimality with the new branching rule
(Table 1).

Density Standard New Branching
Value Nodes sec | Value Nodes sec
1 4.8 214.8 117.2 5.2 71.6 46.2
3 8.8 3333.0 500.6 8.8 525.0 119.6
D 12.6 590.0 724 12.6 296.0 45.8
.7 17.4 79.6 8.4 17.4 51.0 7.8
.9 28.6 3.0 0.8 28.6 7.2 1.0

Table 5: Solving the restricted integer program

Improvements to the column generation implementation would be more robust heuristics
for the maximum weighted clique problem and more intelligent rules for determining when to
terminate the recursion for exactly finding the MWIS. Also, implementing other branching
rules and studying their efficiency would be interesting. For example, the following branching
rule could be used:

16

Consider a fractional solution to the linear relaxation of (IS). As before, there exist two
sets 7 and S5, and vertices 7, 7, such that ¢ € 51N 5;, and 7 € 57\ 52, and at least one of xy,
or ., is fractional. Earlier we created the subproblems SAME(7,7), and DIFFER(¢,5). To
implement DIFFER(¢,7), consider the following: If i is an isolated vertex, there is no reason
to look at DIFFER(¢,j): the solution can be no better than SAME(i,j). Generalizing this,
if © and j are to differ and have the solution not be equivalent to SAME(:,7), one of the
neighbors of 1 must receive the same color as j. So, we can create the subproblems

SAME(i, §)
SAME(iy, §)

SAME(iy, j)

where {i1,13, ..., 1;} are neighbors of ¢. This choice of branching ensures that each node
of the branch-and-bound tree is of similar difficulty and that the depth of the resulting tree
is no more than the number of nodes in the graph. This approach however can have the
optimal solution occuring in more than one branches. To prevent that, the DIFFER(, 7)
could be implemented as follows:

SAME(4y, 5)
DIFFER(71,), SAME(iz, j)
DIFFER(i1,7), DIFFER(72,7), SAME(z3, 7)

DIFFER(iy, j), DIFFER(i3, 5), ...DIFFER(i5_1, j), SAME(ig,).

When it is not crucial to generate a provably optimal coloring, or when the time available
is insufficient for our procedure to complete, simple modifications can be used to generate
good solutions rather quickly. For example, a target value for the coloring can be prespecified
and column generation at the nodes of the branch-and-bound tree can be stopped as soon
as the objective value of the linear program falls below this target value. This can be
useful especially when a good starting solution is already available and one is seeking a
better solution. The branching algorithm can then be terminated as soon as an improving
solution is found. In table 6, we give results for the G(.,.5) graphs. For these experiments,
our algorithm is modified to stop when either a solution that is guaranteed to be within 1
of the best possible solution as determined by rounding up the optimal linear programming
objective value is found or when 100 nodes of the branch-and-bound tree have been explored.
Results are averaged over five instances in each case. The Initial value is the upper bound
corresponding to the starting solution found by the greedy procedure, the LP bound is
obtained by rounding up the linear programming objective value at the root node and the
best solution found with the termination criterion as stated is given by Best Found.

Finally, it would be interesting to study the algorithm’s performance on the various
classes of instances in more detail. Random instances seem to be difficult (at least for some
densities) with graphs as small as 70 nodes. Register allocation graphs seem to be very easy.
Geometric graphs seem markedly different whether one places edges for long distances or
short ones. It would be useful to understand where these differences come from.

17

Size Value Time
Size | Initial LP Bound Best Found sec
70 | 16.8 114 12.4 18.8
80| 18.2 12.0 13.2 48.2
90 | 20.6 13.0 14.2 99.4
100 | 21.6 13.8 15.6 170.2
110 | 22.6 14.6 16.8 248.6
120 | 24.0 15.8 17.6 308.4

Table 6: Results when algorithm is terminated early

References

1]

2]

Egon Balas and H. Samuelsson. A node covering algorithm. Naval Research Logistics

Quarterly, 24(2):213-233, 1977.

Egon Balas and Jue Xue. Minimum weighted coloring of triangulated graphs, with
application to maximum weight vertex packing and clique finding in arbitrary graphs.

SIAM Journal on Computing, 20(2):209-221, 1991.

Egon Balas and Chang Sung Yu. Finding a maximum clique in an arbitrary graph.

SIAM Journal on Computing, 15(4):1054-1068, 1986.

Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savelsbergh,
and Pamela H. Vance. Branch-and-Price: Column Generation for Huge Integer Pro-
grams. School of Industrial & Systems Engineering, Georgia Institute of Technology,
Atlanta, GA 30332-0205, 1994.

D. Brélaz. New Methods to color the vertices of a graph. Communications of the ACM,
22:251-256, 1979.

R. Carraghan and P. M. Pardalos. An exact algorithm for the maximum clique problem.

Operations Research Letters, 9:375-382, 1990.

Fred C. Chow and John L. Hennessy. Register allocation by priority—based coloring.
In Proceedings of the ACM SIGPLAN 84 Symposium on Compiler Construction, pages
222-232, New York, NY, 1984. ACM.

Fred C. Chow and John L. Hennessy. The priority—based coloring approach to register
allocation. ACM Transactions on Programming Languages and Systems, 12(4):501-536,
1990.

Anne Condon. DIMACS Challenge 1994.

D. De Werra. An introduction to timetabling. Furopean Journal of Operations Research,
19:151-162, 1985.

18

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

Andreas Gamst. Some lower bounds for a class of frequency assignment problems. IEEF

Transactions of Vehicular Echnology, 35(1):8-14, 1986.

Martin Gardner. The Unexpected Hanging and Other Mathematical Diversions. Simon
and Schuster, New York, 1969.

Mark Jerrum. Large cliques elude the metropolis process. Random Structures and

Algorithms, 3(4):347-360, 1992.

David S. Johnson. Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences, 9:256-278, 1974.

David 5. Johnson. Worst—case behavior of graph coloring algorithms. In Proceedings
5th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pages
513-527, Winnipeg, Canada, 1974. Utilitas Mathematica Publishing.

Ellis L. Johnson. Modeling and strong linear programs for mixed integer programming.
S.W. Wallace (ed.). Algorithms and Model Formulations in Mathematical Programming,
NATO ASI Series 51, 1989.

Ellis L. Johnson, Anuj Mehrotra, and George L.. Nemhauser. Min-cut clustering. Math
Programming, 62:133-151, 1993.

Donald E. Knuth. The Stanford GraphBase. ACM Press, Addison Wesley, New York,
1993.

S.M. Korman. The graph—coloring problem. In N. Christophides, P. Toth, and C. Sandi,
editors, Combinatorial Optimization, 211-235, Wiley, New York, 1979.

Bassam N. Khoury and Panos M. Pardalos. An algorithm for finding the maximum
clique on an arbitrary graph. DIMACS Challenge, 1993.

M. Kubale and B. Jackowski. A generalized implicit enumeration algorithm for graph

coloring. Communications of the ACM, 28:412-418, 1985.

M. Kubale and E. Kusz. Computational experience with implicit enumeration algo-
rithms for graph coloring. In M. Nagl and J. Perl, editors, Proceedings of the W(G'83
International Workshop on Graphtheoretic Concepts in Computer Science, pages 167—
176, Linz, 1983. Trauner Verlag.

Michael Larsen, James Propp, and Daniel Ullman. The fractional chromatic number of
a graph and a construction of Mycielski. preprint, 1994.

Anuj Mehrotra. Constrained Graph Partitioning: Decomposition, Polyhedral Structure
and Algorithms. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, 1992.

Craig Morgenstern and Harry Shapiro. Coloration neighborhood structures for general

graph coloring. In First Annual ACM-SIAM Symposium on Discrete Algorithms, 1990.

19

[26]
[27]

28]

[29]

[30]

31]

J. Mycielski. Sur le coloriage des graphes. Colloguim Mathematiques, 3:161-162, 1955.

George L. Nemhauser and Les E. Trotter. Vertex packings: Structural properties and
algorithms. Mathematical Programming, 8:232-248, 1975.

B. Pittel. On the probable behaviour of some algorithms for finding the stability number
of a graph. Mathematical Proceedings of the Cambridge Philosophical Society, 92:511—
526, 1982.

Martin W.P. Savelsbergh and George .. Nemhauser. Functional description of MINTO,
a Mixed INTeger Optimizer. School of Industrial & Systems Engineering, Georgia In-
stitute of Technology, Atlanta, GA 30332-0205, 1993.

Edward C. Sewell. An Improved Algorithm for Exact Graph Coloring. To appear,
DIMACS Series on Discrete Mathematics and Theoretical Computer Science, 1995.

P.H. Vance, C. Barnhart, E.L.. Johnson, and G.L. Nemhauser. Solving Binary Cut-
ting Stock Problems by Column Generation and Branch-and-Bound. Computational
Optimization and Applications, to appear, 1994.

20

