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1 Introduction

Let {& )L, be a discrete-time stochastic data process de-
fined on some probability space (€2, F, P) and with & de-
terministic. The stochastic decision x; at period ¢ is as-
sumed to depend only on (&1,. .., &) (nonanticipativity).
Typical financial and production planning model:

min{ | Z (&, 2¢)] @ xr € X¢, x4 nonanticipative,
t=1

Ap(&)re + A1 (&) w1 > gi(ér) }

Alternative for the minimization of expected costs:
Minimizing some risk measure IF' of the stochastic cost
process {c; (&, x4) L, (risk management).

First step of its numerical solution:

Approximation of {&}L | by finitely many scenarios with
certain probabilities. Nonanticipativity leads to a scenario
tree structure of the approximation.



2 Data process approximation by scenario trees

The data process £ = {&}1 | is approximated by a process
forming a scenario tree which is based on a finite set A/
of nodes.

t=1 t tn) T
Scenario tree with ¢, = 2, T =5, /| = 23 and 11 leaves
The root node n = 1 stands for period ¢ = 1. Every other
node n has a unique predecessor n_ and a set NV, (n) of
successors. Let path(n) betheset {1,...,n_,n} of nodes
from the root to node n, t(n) := |path(n)| and Ny =
{n € N : Ny (n) = 0} the set of leaves. A scenario
corresponds to path(n) for some n € Np. With the given
scenario probabilities {7, },c ., we define recursively node

probabilities 7, := Zn+6./\f+(n) Ty, 1€ N.



3 Generation of scenario trees

(i) Development of a stochastic model for the data pro-
cess &

(parametric [e.g. time series model], nonparametric [e.g. re-

sampling])
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Scenarios for the weekly electrical load

and generation of simulation scenarios;

(ii) Construction of a scenario tree out of the stochastic
model
or of the simulation scenarios;

(iii) optional scenario tree reduction.



Approaches for (ii):

(1) Barycentric scenario trees (conditional expectations
w.r.t. a decomposition of the support into simplices)
(Frauendorfer 96,...),

(2) Fitting of trees with prescribed structure to given mo-
ments (Hoyland/Wallace 01, Hoyland/Kaut/Wallace 03);

(3) Conditional sampling by (Quasi) Monte Carlo meth-
ods (QMC means low discrepancy sequences) (Morton
03, Koivu/Pennanen 02, 03),

(4) Clustering methods for bundling scenarios
(Philpott/Craddock/Waterer 00),

(5) Scenario tree construction based on optimal approxi-
mations w.r.t. certain probability metrics
(Pflug 01, Hochreiter/Pflug 02, Growe-Kuska/Heitsch/Romisch 03).

Recent reference: Kaut/Wallace 03



Example: (Hochreiter/Pqug 02)
Let P denote the uniform distribution on [—+/3, /3] and

P be the distribution of Z = ¢;Z; + 275, where Z; is
discrete with two equally probable scenarios —1 and 1, Z,
is standard normal, i.e., Z5 € N(0,1), and ¢; and c; are
normalizing constants (c; := {/%, c2:= /1~ /%). Then the first
four (central) moments coincide

l _ > _ 9 -
/ng(dg)/ﬂgp(dg)o, L0,z i=1,2,34

However, the densities of PP and P have the following form

1 j 1 1 1 K 1
-3 -2 -1 0 1 2 3

and, thus, are quite different.




4 Distances of probability distributions

Let P denote the probability distribution of the stochastic
process {& 1 with & in IR, i.e., P has support = C
RT’T — RS

The Kantorovich functional or transportation metric takes
the form

(P, Q) ==1inf{ [ c(&En(d¢, df) - mn = P, mn = Q},

—__, -
— X =
—_ X

where ¢ : = X = — IR is a certain cost function and the
minimum ist taken w.r.t. all probability measures 7 on
= X = having (fixed) marginals P and Q.

Example: ¢,(€, €) := max{L, |lg&—oll7 ", [E=&oll 1 }lé—
3l

(p > 1, & € = fixed)

We consider the following convex stochastic program

min{/ folz, & )P(dE) - x € X}

with a normal convex integrand f; and denote by
o(P) = inf [ fole, ©)P(dE) and S(P) = axgmin [ fz, ) P(de)

its optimal value and solution set, respectively.



We choose ¢ such that the property

| fol@, €) = fola, Ol < Lllz])e(€, €), V€,€ € E,x € X,

holds with some function L(-) depending on ||z||.

This means that ¢ plays the role of a continuity modulus
of the function fy(z,-) from = to IR (for each z € X).
Typically, fy is continuous and piecewise polynomial.

Theorem: (Stability)
Under weak conditions on the stochastic program the op-
timal values are Lipschitz continuous w.r.t. f., i.e.,

’U(P> o U(Q)‘ < ZA;,LLC<P, Q)a

and the solution sets are upper semicontinuous. In par-
ticular, if S(P) = {z} any element of the approximate
solution set S(Q) is close to T if u.(P, Q) is small.
(Rachev/Rémisch 02, Rémisch 03)



Choice of p > 1 in ¢ = ¢
e two-stage with random right-hand side: p = 1.
e general two-stage with fixed recourse: p = 2.
e multi-stage with random right-hand side: p = 1.*
e general multi-stage with 1" stages: p =T.*

(* present conjecture valid under appropriate assumptions on the dependence struc-
ture;

not valid for mixed-integer models; in that case fj is piecewise continuous !)

Approach:
Select a probability metric a function ¢ : = X = — IR such
that the underlying stochastic optimization model is stable
w.r.t. .
Given P and a tolerance € > 0, determine a scenario tree
such that its probability distribution F;,. has the property

Mc(Paptr) SE.



Distances of discrete distributions
P: scenarios &; with probabilities p;, 1 =1,..., N,
(): scenarios &; with probabilities ¢;, j =1,..., M.

Then

N M
pe(P.Q) = sup{> _paui+ Y gy u; + vy < &, &) Vi, 5}
i—1

j=1
= inf{z niic(&i, &) = mij = 0, ij = Di; ij =4}
i.J J i
(optimal value of linear transportation problems)

(a) Distances of distributions can be computed by solving
specific linear programs.

(b) The principle of optimal scenario generation can be
formulated as a best approximation problem with re-
spect to u.. However, it is nonconvex and difficult to

solve.

(c) The best approximation problem simplifies consider-
ably if the scenarios are taken from a specified finite
set.
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5 Scenario Reduction

We consider discrete distributions P with scenarios &; and
probabilities p;, © = 1,..., N, and () having a subset of
scenarios &£, j € J C {1,...,N}, of P, but different
probabilities ¢;, j € J.

Optimal reduction of a given scenario set J:

The best approximation of P with respect to p. by such
a distribution () exists and is denoted by (). It has the
distance

D] — ,uc P Q sz HllIlC 5275})

1eJ

and the probabilities ¢, = p;+ > pi, Vj & J, where J; :=
’iEJj
{i € J:j5 =73} and j(i) € argn;giblilc(fi,fj), Vi €
j
J, i.e., the optimal redistribution consists in adding the
deleted scenario weight to that of some of the closest sce-
narios.

However, finding the optimal scenario set with a fixed num-
ber n of scenarios is a combinatorial optimization problem.

11



6 Fast reduction heuristics

Starti int (n =N —1): ' ' j
arting point (n ) ZE{IE‘I.?N}}?Z 1}17510(5[753)

Algorithm 1: (Simultaneous backward reduction)

Step [0]: Sorting of {c(;, &) : Vi}, VE,
JO =

Step [i]: [ € arg min g pr min (&, ).
1¢ Jli—1] — jeJli=Hu{ny
keJli=1u{l}

Ji = Ji=ty {1y
Step [N-n+1]: Optimal redistribution.

12



N
Starting point (n = 1): min > prpc(&k, &u)
ue{l,...N} .

Algorithm 2: (Fast forward selection)

Step [0]: Compute (&, &), k,u=1,..., N,
JO .= {1,... N}
Step [i]: w; € arg uemj%ilzl] keJ%\{u} pkjgjfﬁll?\{u} &k, &),
JU = JU=UN L)
Step [n+1]: Optimal redistribution.

13



Original load scenario tree
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Binary test scenario tree

Let a binary scenario tree have N : scenarios &; =
(&, ...,€h), i =1,..., N, with equal probabilities p; =
%,i: 1,...,N,and & = ... = &} as its root node.
Such a scenario tree is called regular if, for each t €

{1,...,T}, 81 := —¢6" and 6% := 0" with ¢’ € IR, and

_ 2T—1

t
&§=Y 0 (te{l,....T}
T=1

where to each index 2 =1, ..., N there corresponds a 7T-
tupel of indices (i1,...,i7) € {1,2}1.
Proposition:

Let a regular binary scenario tree with N = 2/~ scenarios

and T' > 4 be given. Let t; € arg ming<;<7 0°, tg < T —2
and max{go*! §lot2} < 24%,
Then it holds for each n € IN with % <n < N:

N —n
N

Here, ¢ is defined by c(&,€) = ||€ — €]l (£, € € Z).

25%,

D% =min{D;:#J =N —n} =

15



Example: (regular binary scenario tree)
T =11, N =219 =1024,
(6',...,8") = (0,0.5,0.6,0.7,0.9,1.1,1.3,1.6,1.9,2.3, 2.7),

D' = 821 for each & <n < N.

10 -

-10 +

Relative accuracy:

rd(p ) Ml Q)
e (P, Q) 1e(P, g, )
(P og ) = min{D; : #J = N — 1} and ¢(,-) =

H_Hoo
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Number Backward of Simultaneous Fast Minimal
n of Scenario Sets Backward Forward Distance
Scenarios rel Time rel Time rel Time
1 116.01 % | 2s | 111.93% | 96s | 100.00 % | 2s | 100.00 %
2 102.86 % | 2s 75.45% | 96s | 79.16 % 2s *
3 78.54 % 2s 66.54 % | 96s | 63.96 % 2s *
4 66.35 % 2s 61.69 % | 96s | 59.04 % 3s *
5 64.81 % 2s 5795% | 96s | 5451 % 3s *
10 53.68 % 2s 4821 % | 95s | 44.39 % 4s *
20 39.16 % 2s 40.15% | 95s | 35.84 % 7s *
30 35.61 % 2s 3470 % | 94s | 3156 % | 10s *
50 31.55 % 2s 2011 % | 93s | 26.75% | 15s *
100 22.68 % 2s 21.73% | 89s | 2097 % | 27 s *
150 18.48 % 2s 18.16 % | 85s | 18.02% | 38s *
200 16.70 % 2s 1650 % | 81s | 16.11 % | 48s *
250 15.23 % 2s 1521 % | 76s | 1455 % | 565 *
260 14.97 % 2s 1497 % | 75s | 1426 % | 58s | 14.04 %
270 14.75 % 2s 1475% | 74s | 1400% | 60s | 13.86 %
280 14.53 % 2s 1453% | 72s | 13.76 % | 61s | 13.67 %
290 14.30 % 2s 1430% | 71s | 1354 % | 63s | 13.49 %
300 14.08 % 2s 14.08% | 70s | 13.32% | 64s | 13.30 %
350 12.98 % 2s 1298 % | 64s | 1239% | 71s | 1239 %
400 11.88 % 2s 11.88% | 57s | 11.47% | 76s | 11.47 %
450 10.78 % 2s 10.78% | 51s | 1055% | 81s | 10.55 %
500 9.67 % 2s 9.67 % 45 s 9.63 % 85 s 9.63 %
600 7.79 % 2s 7.79 % 33s 7.79 % 91s 7.79 %
700 5.95 % 2s 5.95 % 22's 5.95 % 95 s 5.95 %
800 4.12 % 2s 4.12 % 12s 4.12 % 97 s 412 %

Computational results for the binary scenario tree
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7 Constructing scenario trees from data scenar-
ios

Let a fan of data scenarios £' = (&}, ..., &5) with probabil-
ities 7', i = 1,..., N, be given, i.e., all scenarios coincide
at the starting point t = 1, ie, & = ... = &Y = &

Hence, it has the form

t = 1 may be regarded as the root node of the scenario
tree consisting of N scenarios (leaves).

Now, P is the (discrete) probability distribution of £. Let
c be adapted to the underlying stochastic program con-
taining P.

We describe an algorithm that may produce, for each
e > 0, a scenario tree with distribution F., root node &7,
less nodes than P and

pe(P, P.) < e.

18



Recursive reduction algorithm:

Lete; > 0,2t =1,...,T, be given such that Zthl g < g,
sett =T, Ipy :={1,...,N}, W%H = 7' and Pp.q =
P.

Fort=T,... 2:

Step t: Determine an index set I; C I;,; such that

/LLCt<Pt7 PIH—1> < Et,

where {€}ic1, is the support of B and ¢ is defined by
ci(£,6) =c((&, .. -,&,0,...,0), (&, ..., &,0,...,0));

(scenario reduction w.r.t. the time horizon [1,1])

Step 1: Determine a probability measure P. such that its
marginal distributions P.II,! are Ogr for t =1 and

-1 z : is 1. 1 E J
1€} jGJtﬂj

where Jm Z.: {] c [t—l—l \ [t : Zt(]> = Z}, Zt(]) c
arg mijn ct(&7,€")} are the index sets according to the re-
1€1¢

distribution rule.
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Blue: compute c-distances of scenarios; delete the scenario & add its weight to

the red one



Application:

¢ is the bivariate weekly data process having the compo-
nents

a) electrical load,

b) hourly electricity spot prices (at EEX).

Data scenarios are obtained from a stochastic model cal-
ibrated to the historical load data of a (small) German
power utility and historical price data of the European En-
ergy Exchange (EEX) at Leipzig.

We choose N =50, T'=7, ¢ = 0.05, g, = % and arrive
at a tree with 4608 nodes (instead of 8400 nodes of the
original fan).

t| hours ||
Iy 1---24 1
2| 25---48 | 12
31 49-.-72 | 23
41 73---96 | 31
5 97---120 | 37
6|121.--144| 42
71145---168 | 46
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Scenario tree for the electrical load
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8 GAMS/SCENRED

e GAMS/SCENRED introduced to GAMS Distribution
20.6 (May 2002)

e SCENRED is a collection of C+-+ routines for the
optimal reduction of scenarios or scenario trees

e GAMS/SCENRED provides the link from GAMS pro-
grams to the scenario reduction algorithms. The re-
duced problems can then be solved by a deterministic
optimization algorithm provided by GAMS.

e SCENRED contains three reduction algorithms:
- FAST BACKWARD method
- Mix of FAST BACKWARD /FORWARD methods
- Mix of FAST BACKWARD /BACKWARD methods
Automatic selection (best expected performance w.r.t.
running time)

Details: www.scenred.de, www.scenred.com
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