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1 Introduction

Let {ξt}Tt=1 be a discrete-time stochastic data process de-

fined on some probability space (Ω,F , P ) and with ξ1 de-

terministic. The stochastic decision xt at period t is as-

sumed to depend only on (ξ1, . . . , ξt) (nonanticipativity).

Typical financial and production planning model:

min{IE[

T∑
t=1

ct(ξt, xt)] : xt ∈ Xt , xt nonanticipative,

Att(ξt)xt + At,t−1(ξt)xt−1 ≥ gt(ξt)}

Alternative for the minimization of expected costs:

Minimizing some risk measure IF of the stochastic cost

process {ct(ξt, xt)}Tt=1 (risk management).

First step of its numerical solution:
Approximation of {ξt}Tt=1 by finitely many scenarios with

certain probabilities. Nonanticipativity leads to a scenario

tree structure of the approximation.
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2 Data process approximation by scenario trees

The data process ξ = {ξt}Tt=1 is approximated by a process

forming a scenario tree which is based on a finite set N
of nodes.
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Scenario tree with t1 = 2, T = 5, |N | = 23 and 11 leaves

The root node n = 1 stands for period t = 1. Every other

node n has a unique predecessor n− and a set N+(n) of

successors. Let path(n) be the set {1, . . . , n−, n} of nodes

from the root to node n, t(n) := |path(n)| and NT :=

{n ∈ N : N+(n) = ∅} the set of leaves. A scenario

corresponds to path(n) for some n ∈ NT . With the given

scenario probabilities {πn}n∈NT , we define recursively node

probabilities πn :=
∑

n+∈N+(n) πn+, n ∈ N .
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3 Generation of scenario trees

(i) Development of a stochastic model for the data pro-

cess ξ

(parametric [e.g. time series model], nonparametric [e.g. re-

sampling])
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Scenarios for the weekly electrical load

and generation of simulation scenarios;

(ii) Construction of a scenario tree out of the stochastic

model

or of the simulation scenarios;

(iii) optional scenario tree reduction.
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Approaches for (ii):

(1) Barycentric scenario trees (conditional expectations

w.r.t. a decomposition of the support into simplices)

(Frauendorfer 96,...);

(2) Fitting of trees with prescribed structure to given mo-

ments (Hoyland/Wallace 01, Hoyland/Kaut/Wallace 03);

(3) Conditional sampling by (Quasi) Monte Carlo meth-

ods (QMC means low discrepancy sequences) (Morton

03, Koivu/Pennanen 02, 03);

(4) Clustering methods for bundling scenarios

(Philpott/Craddock/Waterer 00);

(5) Scenario tree construction based on optimal approxi-

mations w.r.t. certain probability metrics

(Pflug 01, Hochreiter/Pflug 02, Gröwe-Kuska/Heitsch/Römisch 03).

Recent reference: Kaut/Wallace 03
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Example: (Hochreiter/Pflug 02)

Let P denote the uniform distribution on [−
√

3,
√

3] and

P̃ be the distribution of Z := c1Z1 + c2Z2, where Z1 is

discrete with two equally probable scenarios −1 and 1, Z2

is standard normal, i.e., Z2 ∈ N(0, 1), and c1 and c2 are

normalizing constants (c1 := 4

√
3
5 , c2 :=

√
1−

√
3
5). Then the first

four (central) moments coincide∫
IR
ξiP (dξ) =

∫
IR
ξiP̃ (dξ) = 0, 1, 0,

9

5
, i = 1, 2, 3, 4.

However, the densities of P and P̃ have the following form
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and, thus, are quite different.
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4 Distances of probability distributions

Let P denote the probability distribution of the stochastic

process {ξt}Tt=1 with ξt in IRr, i.e., P has support Ξ ⊆
IRrT = IRs.

The Kantorovich functional or transportation metric takes

the form

µc(P,Q) := inf{
∫

Ξ×Ξ

c(ξ, ξ̃)η(dξ, dξ̃) : π1η = P, π2η = Q},

where c : Ξ × Ξ → IR is a certain cost function and the

minimum ist taken w.r.t. all probability measures η on

Ξ× Ξ having (fixed) marginals P and Q.

Example: cp(ξ, ξ̃) := max{1, ‖ξ−ξ0‖p−1, ‖ξ̃−ξ0‖p−1}‖ξ−
ξ̃‖
(p ≥ 1, ξ0 ∈ Ξ fixed)

We consider the following convex stochastic program

min{
∫
Ξ

f0(x, ξ)P (dξ) : x ∈ X}

with a normal convex integrand f0 and denote by

v(P ) := inf
x∈X

∫
Ξ

f0(x, ξ)P (dξ) and S(P ) := arg min
x∈X

∫
Ξ

f0(x, ξ)P (dξ)

its optimal value and solution set, respectively.
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We choose c such that the property

|f0(x, ξ)− f0(x, ξ̃)| ≤ L(‖x‖)c(ξ, ξ̃), ∀ξ, ξ̃ ∈ Ξ, x ∈ X,

holds with some function L(·) depending on ‖x‖.
This means that c plays the role of a continuity modulus

of the function f0(x, ·) from Ξ to IR (for each x ∈ X).

Typically, f0 is continuous and piecewise polynomial.

Theorem: (Stability)

Under weak conditions on the stochastic program the op-

timal values are Lipschitz continuous w.r.t. µc, i.e.,

|v(P )− v(Q)| ≤ L̂µc(P,Q),

and the solution sets are upper semicontinuous. In par-

ticular, if S(P ) = {x̄} any element of the approximate

solution set S(Q) is close to x̄ if µc(P,Q) is small.

(Rachev/Römisch 02, Römisch 03)
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Choice of p ≥ 1 in c = cp:

• two-stage with random right-hand side: p = 1.

• general two-stage with fixed recourse: p = 2.

• multi-stage with random right-hand side: p = 1.∗

• general multi-stage with T stages: p = T .∗

(∗ present conjecture valid under appropriate assumptions on the dependence struc-

ture;

not valid for mixed-integer models; in that case f0 is piecewise continuous !)

Approach:

Select a probability metric a function c : Ξ×Ξ→ IR such

that the underlying stochastic optimization model is stable

w.r.t. µc.

Given P and a tolerance ε > 0, determine a scenario tree

such that its probability distribution Ptr has the property

µc(P, Ptr) ≤ ε .
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Distances of discrete distributions
P : scenarios ξi with probabilities pi, i = 1, . . . , N ,

Q: scenarios ξ̃j with probabilities qj, j = 1, . . . ,M .

Then

µc(P,Q) = sup{
N∑
i=1

piui +

M∑
j=1

qjvj : ui + vj ≤ c(ξi, ξ̃j) ∀i, j}

= inf{
∑
i,j

ηijc(ξi, ξ̃j) : ηij ≥ 0,
∑
j

ηij = pi,
∑
i

ηij = qj}

(optimal value of linear transportation problems)

(a) Distances of distributions can be computed by solving

specific linear programs.

(b) The principle of optimal scenario generation can be

formulated as a best approximation problem with re-

spect to µc. However, it is nonconvex and difficult to

solve.

(c) The best approximation problem simplifies consider-

ably if the scenarios are taken from a specified finite

set.
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5 Scenario Reduction

We consider discrete distributions P with scenarios ξi and

probabilities pi, i = 1, . . . , N , and Q having a subset of

scenarios ξj, j ∈ J ⊂ {1, . . . , N}, of P , but different

probabilities qj, j ∈ J .

Optimal reduction of a given scenario set J :

The best approximation of P with respect to µc by such

a distribution Q exists and is denoted by Q̄. It has the

distance

DJ = µc(P,Q) =
∑
i∈J

pi min
j 6∈J

c(ξi, ξj)

and the probabilities q̄j = pj+
∑
i∈Jj

pi, ∀j 6∈ J, where Jj :=

{i ∈ J : j = j(i)} and j(i) ∈ arg min
j 6∈J

c(ξi, ξj), ∀i ∈
J , i.e., the optimal redistribution consists in adding the

deleted scenario weight to that of some of the closest sce-

narios.

However, finding the optimal scenario set with a fixed num-

ber n of scenarios is a combinatorial optimization problem.
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6 Fast reduction heuristics

Starting point (n = N − 1): min
l∈{1,...,N}

pl min
j 6=l

c(ξl, ξj)

Algorithm 1: (Simultaneous backward reduction)

Step [0]: Sorting of {c(ξj, ξk) : ∀j},∀k,
J [0] := ∅ .

Step [i]: li ∈ arg min
l 6∈J [i−1]

∑
k∈J [i−1]∪{l}

pk min
j 6∈J [i−1]∪{l}

c(ξk, ξj).

J [i] := J [i−1] ∪ {li} .
Step [N-n+1]: Optimal redistribution.
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Starting point (n = 1): min
u∈{1,...,N}

N∑
k=1

pkc(ξk, ξu)

Algorithm 2: (Fast forward selection)

Step [0]: Compute c(ξk, ξu), k, u = 1, . . . , N,

J [0] := {1, . . . , N}.
Step [i]: ui ∈ arg min

u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
j 6∈J [i−1]\{u}

c(ξk, ξj),

J [i] := J [i−1] \ {ui} .
Step [n+1]: Optimal redistribution.
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Original load scenario tree
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Binary test scenario tree
Let a binary scenario tree have N := 2T−1 scenarios ξi =

(ξ1
i , . . . , ξ

T
i ), i = 1, . . . , N , with equal probabilities pi =

1
N , i = 1, . . . , N , and ξ1

1 = . . . = ξ1
N as its root node.

Such a scenario tree is called regular if, for each t ∈
{1, . . . , T}, δt1 := −δt and δt2 := δt with δt ∈ IR+ and

ξti =

t∑
τ=1

δτiτ (t ∈ {1, . . . , T})

where to each index i = 1, . . . , N there corresponds a T -

tupel of indices (i1, . . . , iT ) ∈ {1, 2}T .

Proposition:
Let a regular binary scenario tree with N = 2T−1 scenarios

and T ≥ 4 be given. Let t0 ∈ arg min2≤t≤T δ
t, t0 ≤ T−2

and max{δt0+1, δt0+2} ≤ 2δt0.

Then it holds for each n ∈ IN with N
4 ≤ n < N :

Dopt
n := min{DJ : #J = N − n} =

N − n
N

2δt0.

Here, c is defined by c(ξ, ξ̃) := ‖ξ − ξ̃‖∞ (ξ, ξ̃ ∈ Ξ).
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Example: (regular binary scenario tree)

T = 11, N = 210 = 1024,

(δ1, . . . , δ11) = (0, 0.5, 0.6, 0.7, 0.9, 1.1, 1.3, 1.6, 1.9, 2.3, 2.7),

Dopt
n = N−n

N for each N
4 ≤ n < N .

-10

-5

0

5

10

Relative accuracy:

µrelc (P,Q) :=
µc(P,Q)

µc(P, δξl∗)

µc(P, δξl∗) = min{DJ : #J = N − 1} and c(·, ·) :=

‖ · − · ‖∞.
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Number Backward of Simultaneous Fast Minimal
n of Scenario Sets Backward Forward Distance

Scenarios ζrelc Time ζrelc Time ζrelc Time

1 116.01 % 2 s 111.93 % 96 s 100.00 % 2 s 100.00 %
2 102.86 % 2 s 75.45 % 96 s 79.16 % 2 s *
3 78.54 % 2 s 66.54 % 96 s 63.96 % 2 s *
4 66.35 % 2 s 61.69 % 96 s 59.04 % 3 s *
5 64.81 % 2 s 57.95 % 96 s 54.51 % 3 s *

10 53.68 % 2 s 48.21 % 95 s 44.39 % 4 s *
20 39.16 % 2 s 40.15 % 95 s 35.84 % 7 s *
30 35.61 % 2 s 34.70 % 94 s 31.56 % 10 s *
50 31.55 % 2 s 29.11 % 93 s 26.75 % 15 s *

100 22.68 % 2 s 21.73 % 89 s 20.97 % 27 s *
150 18.48 % 2 s 18.16 % 85 s 18.02 % 38 s *
200 16.70 % 2 s 16.50 % 81 s 16.11 % 48 s *
250 15.23 % 2 s 15.21 % 76 s 14.55 % 56 s *
260 14.97 % 2 s 14.97 % 75 s 14.26 % 58 s 14.04 %
270 14.75 % 2 s 14.75 % 74 s 14.00 % 60 s 13.86 %
280 14.53 % 2 s 14.53 % 72 s 13.76 % 61 s 13.67 %
290 14.30 % 2 s 14.30 % 71 s 13.54 % 63 s 13.49 %
300 14.08 % 2 s 14.08 % 70 s 13.32 % 64 s 13.30 %
350 12.98 % 2 s 12.98 % 64 s 12.39 % 71 s 12.39 %
400 11.88 % 2 s 11.88 % 57 s 11.47 % 76 s 11.47 %
450 10.78 % 2 s 10.78 % 51 s 10.55 % 81 s 10.55 %
500 9.67 % 2 s 9.67 % 45 s 9.63 % 85 s 9.63 %
600 7.79 % 2 s 7.79 % 33 s 7.79 % 91 s 7.79 %
700 5.95 % 2 s 5.95 % 22 s 5.95 % 95 s 5.95 %
800 4.12 % 2 s 4.12 % 12 s 4.12 % 97 s 4.12 %

Computational results for the binary scenario tree
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7 Constructing scenario trees from data scenar-
ios

Let a fan of data scenarios ξi = (ξi1, . . . , ξ
i
T ) with probabil-

ities πi, i = 1, . . . , N , be given, i.e., all scenarios coincide

at the starting point t = 1, i.e., ξ1
1 = . . . = ξN1 =: ξ∗1 .

Hence, it has the form
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t = 1 may be regarded as the root node of the scenario

tree consisting of N scenarios (leaves).

Now, P is the (discrete) probability distribution of ξ. Let

c be adapted to the underlying stochastic program con-

taining P .

We describe an algorithm that may produce, for each

ε > 0, a scenario tree with distribution Pε, root node ξ∗1 ,

less nodes than P and

µc(P, Pε) < ε.
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Recursive reduction algorithm:

Let εt > 0, t = 1, . . . , T , be given such that
∑T

t=1 εt ≤ ε,

set t := T , IT+1 := {1, . . . , N}, πiT+1 := πi and PT+1 :=

P .

For t = T, . . . ,2:

Step t: Determine an index set It ⊆ It+1 such that

µct(Pt, Pt+1) < εt ,

where {ξi}i∈It is the support of Pt and ct is defined by

ct(ξ, ξ̃) := c((ξ1, . . . , ξt, 0, . . . , 0), (ξ̃1, . . . , ξ̃t, 0, . . . , 0));

(scenario reduction w.r.t. the time horizon [1, t])

Step 1: Determine a probability measure Pε such that its

marginal distributions PεΠ
−1
t are δξ∗1 for t = 1 and

PεΠ
−1
t =

∑
i∈It

πitδξit
and πit := πit+1 +

∑
j∈Jt,i

πjt+1 ,

where Jt,i := {j ∈ It+1 \ It : it(j) = i}, it(j) ∈
arg min

i∈It
ct(ξ

j, ξi)} are the index sets according to the re-

distribution rule.
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the red one
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Application:
ξ is the bivariate weekly data process having the compo-

nents

a) electrical load,

b) hourly electricity spot prices (at EEX).

Data scenarios are obtained from a stochastic model cal-

ibrated to the historical load data of a (small) German

power utility and historical price data of the European En-

ergy Exchange (EEX) at Leipzig.

We choose N = 50, T = 7, ε = 0.05, εt = ε
T , and arrive

at a tree with 4608 nodes (instead of 8400 nodes of the

original fan).

t hours |It|
1 1 · · · 24 1

2 25 · · · 48 12

3 49 · · · 72 23

4 73 · · · 96 31

5 97 · · · 120 37

6 121 · · · 144 42

7 145 · · · 168 46
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Scenario tree for the electrical load
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Scenario tree for hourly spot prices
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8 GAMS/SCENRED

• GAMS/SCENRED introduced to GAMS Distribution

20.6 (May 2002)

• SCENRED is a collection of C++ routines for the

optimal reduction of scenarios or scenario trees

• GAMS/SCENRED provides the link from GAMS pro-

grams to the scenario reduction algorithms. The re-

duced problems can then be solved by a deterministic

optimization algorithm provided by GAMS.

• SCENRED contains three reduction algorithms:

- FAST BACKWARD method

- Mix of FAST BACKWARD/FORWARD methods

- Mix of FAST BACKWARD/BACKWARD methods

Automatic selection (best expected performance w.r.t.

running time)

Details: www.scenred.de, www.scenred.com
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