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Chance Constrained Scheduling and Pricing for
Multi-Service Battery Energy Storage

Weifeng Zhong , Kan Xie , Yi Liu , Shengli Xie , Fellow, IEEE, and Lihua Xie , Fellow, IEEE

Abstract—This paper studies optimal day-ahead scheduling
of grid-connected batteries that simultaneously provide three
services: 1) load shifting, 2) real-time balancing, and 3) primary
frequency control (PFC). The uncertainties of load and frequency
are incorporated in the cost-minimizing scheduling problem via
chance constraints. The resulting chance-constrained problem
is then reformulated into a mixed-integer second-order cone
program (MISOCP) that can be solved by commercial solvers.
However, it is computationally formidable to obtain the globally
optimal solution to the MISOCP due to the big problem size. To
obtain a suboptimal solution quickly, a heuristic based on penalty
alternating direction method (PADM) is developed to solve the
MISOCP. Fixing the integer solution returned by the heuristic,
we adopt the duality of the second-order cone program (SOCP) to
price the three services in the local market. Theoretical analysis
of the market equilibrium, individual rationality, and balanced
budget is given. Real-world data of load, frequency, and price in
the French grid is used in simulation. The results show that the
proposed heuristic is computationally efficient, and the pricing
results can guarantee a positive utility for each of the batteries,
incentivizing them to provide services.

Index Terms—Chance constraints, battery energy storage,
multi-service battery, primary frequency control, pricing.
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NOMENCLATURE

Indices and Sets

i, I Index and set of batteries, i ∈ I.
k Index of frequency time slots.
n Index of discharging or charging, n ∈ {d,c}.
t, T Index and set of time periods, t ∈ T.

Parameters

e Vector that includes all uncertainties in the system.
�fk Frequency deviation in slot k (Hz).
�k Length of a frequency time slot (s).
�t Length of a time period (h).
εp, εs Safety parameter for battery power/capacity.
ηdi , ηci Discharging/charging efficiency of battery i.
σD,t Standard deviation of eD,t (kWh).
σW,t Standard deviation of eW,t (kWh).
σn Standard deviation of en (h).
ξn Equivalent discharging/charging time of a battery that

provides PFC in a time period (h), where n ∈ {d,c}.
Dt Predicted energy consumption in time t (kWh).
eD,t Random variable denoting the uncertainty of energy

consumption in time t (kWh).
eW,t Random variable denoting the uncertainty of RES

energy generation in time t (kWh).
En Predicted value (i.e., mean) of ξn (h).
en Random variable denoting the uncertainty of ξn (h).
fdb Deadband for PFC (Hz).
fmax Full activation frequency deviation for PFC (Hz).
Pmaxi Maximum discharging/charging power of battery i

(kW).
Qb

t Price at which energy is bought from the grid in time
t ($/kWh).

Qs
t Price at which energy is sold to the grid in time t

($/kWh).
Qm Price of committed power for PFC ($/kW).
Smaxi Maximum energy state of battery i (kWh).
Smini Minimum energy state of battery i (kWh).
Wt Predicted RES energy generation in time t (kWh).

Variables

ϑn,i(·) Discharging/charging cost function of battery i ($),
where n ∈ {d,c}.

an
i,t Participation factor of the discharging/charging

power of battery i for balancing in time t, where
n ∈ {d,c}.

gbt Energy bought from the grid in time t (kWh).
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gst Energy sold to the grid in time t (kWh).
pn

i,t Discharging/charging power of battery i for load
shifting in time t (kW), where n ∈ {d,c}.

pn
i,t(e) Discharging/charging power of battery i for load

shifting and balancing in time t (kW), where n ∈
{d,c}.

rn
i,t Discharging/charging power of battery i for PFC in

time t (kW), where n ∈ {d,c}.
rk Actual power for PFC in slot k (kW).
rm Committed power for PFC (kW).
si,t(e) Energy stored in battery i in time t considering

uncertainty e (kWh).
xn

i,t Binary variable indicating the discharging/charging
state of battery i in time t, where n ∈ {d,c}.

I. INTRODUCTION

BATTERY energy storage characterized by high ramp
rates and fast response can provide power systems with

multiple services such as 1) load shifting [1]: move energy
consumption and generation across time periods to prevent
network overload, reduce generation cost, and realize energy
arbitrage; 2) real-time balancing [2], [3]: offset unforeseen
real-time variations of consumption and generation to achieve
demand-supply balance; 3) frequency control [4]: respond to
fast frequency deviations for maintaining power quality and
system stability. In deregulated electricity markets, battery
operators would optimize the use of charging and discharging
power in multiple services to maximize revenue [5]. Via appro-
priate market and pricing rules, battery operators could be
incentivized to increase investment in high-performance bat-
teries. This will greatly benefit power systems in transitioning
to massive use of distributed, intermittent renewable energy
sources (RES) and minimum use of controllable thermal
generation.

This paper studies optimal day-ahead scheduling and pric-
ing for grid-connected batteries that simultaneously provide
three services: 1) load shifting, 2) real-time balancing, and
3) primary frequency control (PFC). The comparison with the
related works is summarized in Table I. Load shifting is the
most common battery service based on the foreseeable demand
and RES supply. In contrast, balancing and frequency control
require that part of battery power is reserved for responding
to real-time uncertain variations. In [8]–[11], power reserve
decisions are made based on the upper and lower bounds of
uncertainty. Their reserve results are mostly conservative, lead-
ing to relatively high system costs. Another flexible way to
handle uncertainty is to employ distributionally robust chance
constraints [2], [12]–[14], which have been increasingly used
in recent related works. Chance constraints are characterized
by the statistical information of uncertainty. Adjusting the
safety parameters in chance constraints can strike a balance
between reliability and economy [15]. In addition, most related
works [2], [6]–[14] focus on the scheduling for multi-service
batteries from a system-wide view but lack discussion on
profit allocation among multiple batteries that jointly provide
services. In this paper, we propose a pricing method for a local

market, which can quantify each battery’s income from each
service and incentivize batteries to provide services.

The technical contributions of this paper are as follows.
• We propose a chance-constrained model of batteries

incorporating load shifting, balancing, and PFC. In par-
ticular, empirical information of means and variances
is derived from real-world frequency deviation data,
characterizing the uncertainty of energy content in PFC.

• We reformulate the chance-constrained multi-service
scheduling problem to a mixed-integer second-order cone
program (MISOCP) that can be solved by off-the-shelf
solvers. However, getting the globally optimal solution
is badly time-consuming due to the big problem size.
We thus develop a heuristic based on penalty alternat-
ing direction method (PADM) [16] to solve the MISOCP.
The results show that the proposed heuristic can obtain
high-quality feasible solutions quickly.

• By fixing the integer solution returned by the heuris-
tic, the MISOCP becomes a second-order cone program
(SOCP). We then employ the duality of the SOCP to
price the three services in the local market. We also pro-
vide theoretical analysis of market equilibrium, individual
rationality, and balanced budget. The pricing results
show that each battery has a positive utility, i.e., service
incomes are enough to cover battery costs.

The novelty of this paper is twofold. 1) We consider multi-
period scheduling for batteries to provide three services, which
leads to a large-size mixed-integer problem, and then we newly
employ PADM as a heuristic to efficiently solve the problem.
2) We use the duality-based pricing method to determine the
profit allocation among batteries that cooperatively provide
multiple services. These two points are the major differences
compared with the existing works on multi-service energy
storage, e.g., [2], [6]–[14].

II. SYSTEM MODEL

Consider a local system (e.g., a microgrid) consisting of
consumers, RES, and batteries. Each battery is indexed by
i ∈ I := {1, . . . , I}. The scheduling horizon is the next oper-
ating day which is divided into multiple time periods, and
each period is indexed by t ∈ T := {1, . . . , T}. Let Wt be
the predicted total energy (kWh) produced by RES and Dt be
the predicted total energy consumption (kWh) in t. We call
(Dt −Wt) the (net) load of the system in t. Suppose that the
load and batteries are connected to a bus without considering
line flow limits. The data interaction among different entities
can be implemented by advanced communications and com-
puting technologies [17], [18]. In what follows, we introduce
the three battery services and the chance-constrained battery
model.

A. Load Shifting

Let pdi,t and pci,t denote the discharging and charging power
(kW) of battery i in t, respectively. Let gbt and gst be the
energy (kWh) that the system buys from and sells to the grid,
respectively. The energy balance of the system for t ∈ T is
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TABLE I
RELATED WORKS ON MULTI-SERVICE ENERGY STORAGE

described by
∑

i∈I

(
pdi,t − pci,t

)+ gbt − gst = Dt −Wt, (1)

pdi,t ≥ 0, pci,t ≥ 0, gbt ≥ 0, gst ≥ 0. (2)

In this paper, we set the length of a time period to �t = 1 h, so
�t is omitted in the first term in (1). The first battery service
is to shift the system’s load among periods in order to reduce
the cost in trading energy with the grid. For this service, the
decision variables are g := {gbt , gst }t∈T and p := {pi}i∈I where
pi := {pdi,t, pci,t}t∈T .

B. Real-Time Balancing

Dt and Wt are predictive values that are rarely equal to their
actual measurements. Define eD,t as a random variable repre-
senting the consumption uncertainty (kWh) with a mean of
E[eD,t] = 0 and a variance of Var[eD,t] = σ 2

D,t. Similarly,
let eW,t stand for the RES uncertainty with E[eW,t] = 0
and Var[eW,t] = σ 2

W,t. Let e be a vector representing all the
uncertainties in the system. Let pdi,t(e) and pci,t(e) denote the
discharging and charging power under uncertainty e, respec-
tively. The energy balance under uncertainty for t ∈ T is
described by
∑

i∈I

[
pdi,t(e)− pci,t(e)

]+ gbt − gst = Dt + eD,t −
(
Wt + eW,t

)
,

(3)

pdi,t(e) = pdi,t + adi,t
(
eD,t − eW,t

)
, (4)

pci,t(e) = pci,t − aci,t
(
eD,t − eW,t

)
. (5)

In (4) and (5), {pdi,t, pci,t} are scheduled values, and {adi,t, aci,t}
are the participation factors of battery i in t. A higher adi,t
(or aci,t) means that battery i reserves more discharging (or
charging) power for load uncertainty (eD,t − eW,t). We define

∑

i∈I

(
adi,t + aci,t

) = 1, (6)

adi,t ≥ 0, aci,t ≥ 0. (7)

The second battery service is to reserve batteries’ power to
offset the realization of load uncertainty. The corresponding
decision variables are a := {ai}i∈I where ai := {adi,t, aci,t}t∈T .
Once {p, a} are determined and the realization of (eD,t − eW,t)

is known, the actual battery operation on the operating day
can be directly provided by (4) and (5).

C. Primary Frequency Control (PFC)

The third battery service is to provide the grid with PFC.
Let rm ≥ 0 be the power (kW) committed by the local system
for PFC. Once rm is determined, the system should ensure that
±rm is always available for all periods t ∈ T on the operating
day. The committed power ±rm is jointly provided by multiple
batteries. Let rdi,t and rci,t denote the discharging and charging
power (kW) committed by battery i for PFC in t, respectively.
We have

∑

i∈I

rdi,t = rm,
∑

i∈I

rci,t = rm, (8)

rm ≥ 0, rdi,t ≥ 0, rci,t ≥ 0. (9)

The decision variables for PFC are r := {rm, {ri}i∈I} where
ri := {rdi,t, rci,t}t∈T . Note that r denotes the committed (maxi-
mum) power. On the operating day, the actual power for PFC
will vary according to real-time frequency deviation.

Next, we model the uncertainty of PFC in the time domain.
A frequency time slot is indexed by k. The length of a
frequency time slot is denoted by �k (e.g., 10 s) that is
much shorter than the length of a time period �t = 1 h.
The frequency deviation (Hz) is given by �fk = fN− fk where
fN is the nominal frequency (e.g., 50 Hz) and fk is the local
frequency measured at time slot k. Put aside the batteries
indexed by i ∈ I temporarily and consider a conceptual bat-
tery that fully provides the committed power ±rm. Define rk

as the actual power of the conceptual battery responding to
frequency deviation �fk with −rm ≤ rk ≤ rm. Following the
proportional rule of PFC [4], we have

rk =
⎧
⎨

⎩

0, if |�fk| ≤ fdb;
rm(�fk/fmax), if fdb < |�fk| ≤ fmax;
rm(�fk/|�fk|), if |�fk| > fmax.

(10)

In the first case in (10), fdb ≥ 0 denotes the deadband.
Any frequency deviation within the deadband will not be
responded. In the second case, fmax > 0 denotes the full acti-
vation frequency deviation, and rk is proportional to �fk. In
the third case, rk is at its maximum or minimum, ±rm. Here,
{fdb, fmax} are fixed parameters that are generally decided
by the grid. The grid could also provide several choices of
{fdb, fmax}, and the local system chooses one of them.

By the second and third cases in (10), it can be seen that
the conceptual battery is discharged (rk > 0) if �fk > 0, and
it is charged (rk < 0) if �fk < 0. In a period of �t , we
define two sets of time slots: Kd

1 = {k | fdb < �fk ≤ fmax}
and Kd

2 = {k | �fk > fmax}. These two sets are composed of
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Fig. 1. Histograms of the equivalent discharging time ξd. �fk is given by
the 10-second frequency deviation data (�k = 10 s) measured during Dec.
2019 in the French grid [19].

the time slots at which the battery is discharged. According
to (10), the discharging energy (kWh) in �t is denoted by

∑

k∈Kd
1∪Kd

2

rk�k =
∑

k∈Kd
1

rm
�fk
fmax

�k + ∣∣Kd
2

∣∣rm�k

= rm�k

⎛

⎜⎝
∑

k∈Kd
1

�fk
fmax
+ ∣∣Kd

2

∣∣

⎞

⎟⎠

= rmξd, (11)

where ξd is called the equivalent discharging time (h) of a
battery that provides PFC in �t. By (11), the uncertainty in
PFC is transferred from rk to ξd that is in the time domain.
Similarly, if battery i has a committed discharging power of
rdi,t in time period t, its discharging energy caused by PFC is
rdi,tξd. Following the same way, we can define the equivalent
charging time ξc.

According to the definition in (11), ξd is determined by
predefined parameters {�k, fdb, fmax} and uncertain devia-
tions �fk. Here, we consider ξd as a random variable with
E[ξd] = Ed and Var[ξd] = σ 2

d . Fig. 1 shows the histograms of
ξd [19]. Let ξd = Ed+ ed where ed represents the uncertainty
of ξd with E[ed] = 0 and Var[ed] = σ 2

d . Hereafter, we use
{Ed, ed} instead of ξd. Similarly, we define Ec as the mean of
ξc and ec as the corresponding uncertainty with E[ec] = 0 and
Var[ec] = σ 2

c . In simulation, {Ed, Ec, σ 2
d , σ 2

c} are sampling
values derived from the French grid data [19]. Now, we have
rdi,t(Ed + ed) and rci,t(Ec + ec), which denote the ith battery’s
discharging and charging energy (kWh) caused by PFC in time
period t, respectively. These two terms relate to battery energy
state evolution and operating cost, which will be presented in
the following sections. In this paper, the uncertainty of PFC
is described by {ed, ec}.

D. Chance-Constrained Battery Model

The system uncertainty vector can be formally defined
as e := {{eD,t, eW,t}t∈T, ed, ec} including the uncertainties of
demand, RES, and PFC. Let ηdi and ηci be the discharging and
charging efficiencies of battery i, respectively. Define si,t(e) as
the energy (kWh) stored in battery i in t under uncertainty e.
The energy state evolution of battery i is given by

si,t+1(e) = si,1 +
t∑

τ=1

[
ηci pci,τ (e)−

1

ηdi
pdi,τ (e)

]

+
t∑

τ=1

[
ηci rci,τ (Ec + ec)− 1

ηdi
rdi,τ (Ed + ed)

]
, (12)

where the first square bracket denotes the energy change
caused by load shifting and balancing, and the second square
bracket is the energy change caused by PFC.

Next, we define the chance constraints for pdi,t(e), pci,t(e),
and si,t+1(e). Without assuming that e follows a certain distri-
bution, we consider that the underlying distribution of e comes
from a family of distributions (i.e., an ambiguity set) that share
the same mean and covariance matrix [15]. According to (4)
and (5), we define a random vector ep,t := {eD,t, eW,t} rep-
resenting the uncertainty relating to {pdi,t(e), pci,t(e)}. Let 	p,t

be the covariance matrix of ep,t. The ambiguity set for ep,t is
defined as


p,t :=
{
P | EP

[
ep,t

] = 0, EP

[
ep,te�p,t

]
= 	p,t

}
, (13)

where P stands for a probability distribution/function. The
chance constraints for discharging and charging power of
battery i ∈ I in t ∈ T are written as

inf
P∈
p,t

P
[
0 ≤ pdi,t(e)+ rdi,t ≤ xdi,tP

max
i

] ≥ 1− εp, (14)

inf
P∈
p,t

P
[
0 ≤ pci,t(e)+ rci,t ≤ xci,tP

max
i

] ≥ 1− εp, (15)

where Pmaxi is the maximum discharging/charging power, and
{xdi,t, xci,t} are binary variables satisfying

xdi,t, xci,t ∈ {0, 1}, xdi,t + xci,t = 1, (16)

which means that battery i is either discharged or charged
in t. Define x := {xi}i∈I where xi := {xdi,t, xci,t}t∈T . In (14)
and (15), εp > 0 is the safety parameter, a small constant.
A smaller εp implies a smaller chance to violate the power
bounds [0, Pmaxi ].

Similarly, from (12), we define a vector es,t := {eD,1, . . . ,

eD,t, eW,1, . . . , eW,t, ed, ec} representing the uncertainty relating
to si,t+1(e), with a covariance matrix denoted as 	s,t. Similar
to (13), define an ambiguity set 
s,t with respect to es,t. The
chance constraint for si,t+1(e) for i ∈ I, t ∈ T is given by

inf
P∈
s,t

P
[
Smini ≤ si,t+1(e) ≤ Smaxi

] ≥ 1− εs, (17)

where Smini and Smaxi are the minimum and maximum energy
states of battery i, respectively, and εs > 0 indicates the
chance to violate the energy bounds [Smini , Smaxi ]. Recall that
the uncertainty of PFC is modeled in the time domain in the
previous subsection. Thus, the power chance constraints (14)
and (15) only include the uncertainty of balancing, while the
energy chance constraint (17) includes the uncertainties of
both balancing and PFC.

III. PROBLEM FORMULATION

A. System Cost Minimization

Let Qb
t and Qs

t be the prices ($/kWh) at which the system
buys energy from and sells energy to the grid, respectively.
The cost of trading energy with the grid in t is given by
Qb

t gbt − Qs
t gst . Let Qm be the price ($/kW) of providing PFC

to the grid for one day. The corresponding income is Qmrm.
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Quadratic functions [15], [20] are used to quantify the bat-
tery discharging and charging costs: ϑn,i(χ) = Cn2,iχ

2 +
Cn1,iχ,∀n ∈ {d,c}, where {Cn2,i, Cn1,i} are constants. The
system cost minimization problem is given by

min
g,p,a,

r,x

∑

t∈T

(
Qb

t gbt − Qs
t gst

)− Qmrm

+
∑

n∈{d,c},
i∈I,t∈T

E
[
ϑn,i

(
pn

i,t(e)+ rn
i,t(En + en)

)]
, (18)

s.t. (1), (2), (4)–(9), (12), (14)–(17),

where a new index n ∈ {d,c} is used to represent discharg-
ing or charging. It can be found that (3) is equivalent to (1)
if (4)–(6) hold, so (3) is omitted here. It is difficult to directly
solve problem (18) due to the random variables e and chance
constraints (14), (15), (17). In what follows, we reformulate
problem (18) to a deterministic form.

B. Problem Reformulation

1) Objective Function: To simplify the problem, we assume
that the entries in e are uncorrelated with each other. This
assumption is acceptable if the uncertainty in the system is
mostly caused by discrete and changeable factors. For exam-
ple, demand uncertainties {eD,t}t∈T are generally uncorrelated
if they are caused by the random use of, say, elevators,
motion sensor lights, and automatic doors. The uncorrelation
assumption is often used in related works [2], [13], [14] for
model/problem simplification. By this assumption, we have
Var[eD,t − eW,t] = σ 2

D,t + σ 2
W,t and E[eD,ten] = E[eW,ten] = 0

where n ∈ {d,c}. Then, the expectation in (18) can be
expressed in a deterministic form:

E
[
ϑn,i

(
pn

i,t(e)+ rn
i,t(En + en)

)]

= Cn2,i
(
pn

i,t

)2 + Cn2,i

(
σ 2
D,t + σ 2

W,t

)(
an

i,t

)2

+ Cn2,i

(
E2

n + σ 2
n

)(
rn

i,t

)2 + 2Cn2,iEnpn
i,tr

n
i,t

+ Cn1,ip
n
i,t + Cn1,iEnrn

i,t, (19)

which is a nonconvex function due to the bilinear term pn
i,tr

n
i,t.

2) Convex Envelopes: We eliminate the bilinear terms by
relaxing them to their convex envelopes, similar to [21]. A
bilinear term pr with Pl ≤ p ≤ Pu and Rl ≤ r ≤ Ru can be
relaxed to a convex envelope h defined as

h ≥ Plr + pRl − PlRl, h ≥ Pur + pRu − PuRu,

h ≤ Plr + pRu − PlRu, h ≤ Pur + pRl − PuRl,

which is known as McCormick envelopes [22]. In our model,
we have 0 ≤ pn

i,t, rn
i,t ≤ Pmaxi . Thus, the bilinear term pn

i,tr
n
i,t

can be relaxed to

pn
i,tr

n
i,t ≥ 0, pn

i,tr
n
i,t ≥ Pmaxi

(
rn

i,t + pn
i,t

)− (Pmaxi

)2
, (20a)

pn
i,tr

n
i,t ≤ Pmaxi pn

i,t, pn
i,tr

n
i,t ≤ Pmaxi rn

i,t, (20b)

where we take pn
i,tr

n
i,t as a new individual variable. Define pr :=

{pri}i∈I where pri := {pn
i,tr

n
i,t}n∈{d,c},t∈T .

3) Chance Constraints: As per [15], a chance constraint in
the form of

inf
P∈
P

[∣∣∣v�e+ w
∣∣∣ ≤ U

]
≥ 1− ε (21)

can be exactly reformulated as a set of deterministic
inequalities:

y2 + v�	v ≤ ε(U − z)2, |w| ≤ y+ z,

0 ≤ y, 0 ≤ z ≤ U, (22)

where {y, z} are auxiliary variables; 	 denotes the covariance
matrix of the random vector e. In (21), 
 is the ambigu-
ity set defined with respect to e, similar to (13). Here, we
first write the chance constraints (14), (15), (17) in the form
of (21), and then transform them into the form of (22).
Define auxiliary variables {y, z} := {yi, zi}i∈I where {yi, zi} :=
{yn

i,t, zn
i,t}n∈{d,c,s},t∈T . We have
(
yn

i,t

)2 +
(
σ 2
D,t + σ 2

W,t

)(
an

i,t

)2 ≤ εp
(
Un

i,t − zn
i,t

)2
, (23a)

∣∣pn
i,t − Un

i,t

∣∣ ≤ yn
i,t + zn

i,t, (23b)

0 ≤ yn
i,t, 0 ≤ zn

i,t ≤ Un
i,t := (xn

i,tP
max
i − rn

i,t

)
/2, (23c)

where n ∈ {d,c} corresponding to (14) and (15), respectively.
We have

(
ysi,t
)2 +Ms

i,t ≤ εs
[(

Smaxi − Smini

)
/2− zsi,t

]2
, (24a)∣∣Λs

i,t

∣∣ ≤ ysi,t + zsi,t, (24b)

0 ≤ ysi,t, 0 ≤ zsi,t ≤
(
Smaxi − Smini

)
/2, (24c)

Ms
i,t :=

t∑

τ=1

(
σ 2
D,τ + σ 2

W,τ

)(
ηci aci,τ +

1

ηdi
adi,τ

)2

+ σ 2
c

(
ηci

t∑

τ=1

rci,τ

)2

+ σ 2
d

(
1

ηdi

t∑

τ=1

rdi,τ

)2

, (24d)

Λs
i,t :=

t∑

τ=1

[
ηci
(
pci,τ + Ecrci,τ

)− 1

ηdi

(
pdi,τ + Edrdi,τ

)
]

+ si,1 −
(
Smaxi + Smini

)
/2, (24e)

corresponding to (17). Note that (23a) and (24a) are second-
order cone (SOC) constraints because of the uncorrelation
assumption.

C. Mixed-Integer Second-Order Cone Program (MISOCP)

By taking pn
i,tr

n
i,t as an individual variable, we write

the battery cost function (19) as ϕn
i,t(p

n
i,t, an

i,t, rn
i,t, pn

i,tr
n
i,t).

Problem (18) can be transformed to the following MISOCP:

min
g,p,a,r,x,

y,z,pr

∑

t∈T

(
Qb

t gbt − Qs
t gst

)− Qmrm

+
∑

n∈{d,c},
i∈I,t∈T

ϕn
i,t(p

n
i,t, an

i,t, rn
i,t, pn

i,tr
n
i,t), (25)

s.t. (1), (2), (6)–(9), (16), (20), (23), (24).

This problem is a relaxation of problem (18) due to (20),
but the impact of the relaxation on the optimal objective
value would be small since En is generally small in prac-
tice (En ≈ 0.066 h in simulation). Note that the relaxation
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only applies to the objective function, so any feasible solution
to problem (25) is still feasible to the original problem (18).
Constraints gbt gst = 0 and adi,ta

c
i,t = 0 are not included

in problem (25) as they can be satisfied automatically (see
Appendix A).

MISOCP is mostly NP-hard and can be solved by exact
algorithms (e.g., branch and bound) via off-the-shelf solvers
(e.g., CPLEX). See [23] for a review of the algorithms
and solvers for convex mixed-integer nonlinear programs
(MINLP). However, if the time spent by exact algorithms to
get the optimal solution is too long, we may resort to heuris-
tics. For instance, we set up problem (25) with 3 batteries and
24 time periods, and CPLEX was unable to prove the opti-
mality of the solution in 10 hours. For practicality, a heuristic
is developed in the next section to get suboptimal solutions
quickly.

IV. SOLUTION

A. Penalty Alternating Direction Method (PADM)

Based on PADM [16], we develop a heuristic to obtain
a suboptimal solution to problem (25) quickly. First, we
transform problem (25) to make it suitable for the PADM
framework. Let the objective of problem (25) be written as
minY f (Y), and let Y ∈ Y denote the continuous relaxation
of the constraints in (25), i.e., xn

i,t ∈ {0, 1} is relaxed to 0 ≤
xn

i,t ≤ 1. Define auxiliary variables Z := {Zn
i,t}n∈{d,c},i∈I,t∈T

and an integer set Z := {Z | Zn
i,t ∈ {0, 1}, Zdi,t + Zci,t = 1}.

Problem (25) can be written in an equivalent form:

min
Y,Z

f (Y), s.t. Y ∈ Y, Z ∈ Z, x = Z,

where x is part of Y. By the definitions of x and Z, we have
|xdi,t−Zdi,t| = |xci,t−Zci,t|. This implies that we can simplify the
constraint x = Z to either xdi,t = Zdi,t or xci,t = Zci,t. Here we
choose the former, which is further decomposed into

xdi,t ≥ Zdi,t, xdi,t ≤ Zdi,t.

Then, we penalize them in the objective function. The resulting
penalty problem is given by

min
Y,Z

αWf (Y)+ (1− α)
∑

i∈I,t∈T

(
ρ0i,t
[
xdi,t − Zdi,t

]+

+ ρ1i,t
[
Zdi,t − xdi,t

]+)
, (26)

s.t. Y ∈ Y, Z ∈ Z,

where [χ ]+ means max{0, χ}; ρ := {ρ0i,t, ρ1i,t}i∈I,t∈T are
penalty parameters; 0 ≤ α ≤ 1 is a weight parameter for
balancing the system cost f and penalty; W is a normalization
factor [16].

Next, we employ PADM to solve problem (26), as shown
in Algorithm 1. The objective function in (26) is written as
φ(Y, Z; ρ, α). The algorithm is composed of two loops. The
inner loop, indexed by m, is a standard ADM that can converge
to partial minima of problem (26) when {ρ, α} are given [16].
The two problems (27) and (28) can be simplified as follows.

Algorithm 1: Heuristic Based on PADM

1 Input: m = 0, {Y0, Z0}, ρ > 0, �ρ > 0, α = 1, 0 < θ < 1.
2 Output: Integer solution Z∗
3 Normalization factor: W = √TI‖∇f (Y0)‖−1

2 .
4 repeat // Outer loop
5 repeat // Inner loop

6 Continuous solution: Ym+1

= arg min
Y
{φ(Y, Zm; ρ, α) | Y ∈ Y}. (27)

7 Integer solution: Zm+1

= arg min
Z
{φ(Ym+1, Z; ρ, α) | Z ∈ Z}. (28)

8 Inner loop index: m← m+ 1.
9 until Zm = Zm−1;

10 Weight parameter update: α← θα.
11 Penalty parameter update:

ρ0i,t ← ρ0i,t +�ρ, if Zd,m
i,t = 0. (29)

ρ1i,t ← ρ1i,t +�ρ, if Zd,m
i,t = 1. (30)

12 until xm = Zm;

Due to Zd,m
i,t ∈ {0, 1}, the objective in (27) can be written as

min
Y

αWf (Y)+ (1− α)
∑

{i,t}:Zd,m
i,t =0

ρ0i,tx
d
i,t

+ (1− α)
∑

{i,t}:Zd,m
i,t =1

ρ1i,t
(
1− xdi,t

)
. (31)

This shows that problem (27) is a convex program. In
problem (28), f (Ym+1) is a constant, so the solution Zm+1

can be directly given by

Zd,m+1
i,t =

{
0, if ρ0i,tx

d,m+1
i,t ≤ ρ1i,t

(
1− xd,m+1

i,t

)
;

1, otherwise.
(32)

In the outer loop, weight parameter α and penalty param-
eters ρ are updated. The purpose of updating α is to obtain
a feasible solution. α will gradually decrease to increasingly
emphasize the penalty terms so as to reach x = Z. The purpose
of updating ρ is to obtain a good integer solution Z. The idea
is to use perturbation that allows the algorithm to try different
choices of integers. Here, the perturbation is implemented by
the penalty parameter update in (29) and (30). Fig. 2 shows the
effect of (29) and (30) on integer solution Zdi,t if xdi,t is fixed. It
can be seen that if xdi,t is far from both 0 and 1 (xdi,t = 0.5, 0.7),
then Zdi,t is frequently shifted between 0 and 1. This can be
understood as strong perturbation that lets the algorithm keep
trying between Zdi,t = 0 and Zdi,t = 1. Fig. 2 also shows that
if xdi,t is closer to 0 or 1, then less perturbation appears. This
can assist the algorithm in converging to xdi,t ≈ Zdi,t. Fig. 2 is
only used for demonstrating the effect of the penalty parameter
update. In fact, xdi,t is given by the solution to problem (27), so
xdi,t is generally varying (not fixed) in the algorithm. Therefore,
the perturbation frequency can adapt to xdi,t, helping the inner
loop reach xdi,t ≈ Zdi,t.
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Fig. 2. The effect of the penalty parameter update on integer solution Zdi,t
in the case that xdi,t is fixed and �ρ = 10. The x-axes denote the iteration of
the outer loop in Algorithm 1.

In summary, the inner loop of Algorithm 1 is responsible
for providing a partial minimum of penalty problem (26) with
given ρ and α. Note that the partial minima satisfy Y ∈ Y and
Z ∈ Z . In the outer loop, the update of ρ helps the inner loop
explore different integer solutions and converge to x ≈ Z. The
update of α gradually emphasizes the penalty terms in (26)
for reaching x = Z. Therefore, if Algorithm 1 terminates, it
can return a feasible solution to the original problem (25).

B. Implementation

According to (8), if the system provides PFC (rm > 0), it
should ensure both

∑
i∈I rdi,t > 0 and

∑
i∈I rci,t > 0 for every

t ∈ T. This means that the system needs at least one battery
with xdi,t = 1 and at least one battery with xcj,t = 1, j �= i for
every t. But, the integer solution given by (32) often yields∑

i∈I Zdi,t = 0 or
∑

i∈I Zdi,t = I for some t, which results in
rm = 0, i.e., no PFC service. To guarantee the availability of
PFC, we can add the following constraint to problem (28).

1 ≤
∑

i∈I

Zdi,t ≤ I − 1. (33)

When Algorithm 1 starts, Y0 can be given by the solu-
tion to {minY f (Y) | Y ∈ Y}, while Z0 can be randomly
generated (because of the initial value of α = 1). For imple-
mentation, we change the outer loop stopping condition to
‖xm − Zm‖∞ < 10−3 and ‖xm − xm−1‖∞ < 10−5, where the
second inequality ensures the stability of the results. When
Algorithm 1 terminates, we only use the resulting integer solu-
tion Z∗. Then, we solve the MISOCP (25) with x = Z∗ to get
the final continuous solution Y∗.

V. PRICING FOR MULTIPLE SERVICES

A. Local Market

Similar to [20], we employ duality to determine the prices
of the services. By fixing binary variables to x = Z∗, the
MISOCP (25) becomes a SOCP. Hereafter, the SOCP refers
to the MISOCP (25) with x = Z∗. Due to the convexity of the
SOCP, we define the service prices as follows.

1) For load shifting, define λt as the multiplier of energy
balance constraint (1). It is the energy price ($/kWh) at

which the batteries and load trade energy in the system
at t. Define λ := {λt}t∈T .

2) For balancing, define μt as the multiplier of con-
straint (6). It is the payment ($) made by the load for
buying balancing reserve in t. Define μ := {μt}t∈T .

3) For PFC, define πd
t and πc

t as the multipliers of the
two constraints in (8), respectively. They are the prices
($/kW) of discharging and charging power reserved for
PFC in t. Define π := {πd

t , πc
t }t∈T .

With the prices � := {λ,μ,π}, we analyze the system from
a market perspective. Here, we consider a local market with
two types of agents: batteries and a system manager. For bat-
tery i ∈ I, its individual utility maximization problem is given
by

max
pi,ai,ri,
yi,zi,pri

∑

t∈T

[
λt
(
pdi,t−pci,t

)+ μt
(
adi,t+aci,t

)+ πd
t rdi,t + πc

t rci,t
]

−
∑

t∈T,
n∈{d,c}

ϕn
i,t(p

n
i,t, an

i,t, rn
i,t, pn

i,tr
n
i,t), (34)

s.t. pn
i,t ≥ 0, an

i,t ≥ 0, rn
i,t ≥ 0,∀n ∈ {d,c}, t ∈ T,

Relaxation constraints: (20),∀n ∈ {d,c}, t ∈ T,

Power constraints: (23),∀n ∈ {d,c}, t ∈ T,

Energy constraints: (24),∀t ∈ T.

In this problem, x is fixed to Z∗. As shown by the objec-
tive function (34), a battery’s utility is defined as the incomes
minus the operating cost. The system manager is a non-profit
agent, acting as an interface between the grid and batteries.
The system manager’s problem is given by

max
g,rm

Qmrm −
∑

i∈I

∑

t∈T

(
πd

t rdi,t + πc
t rci,t

)

+
∑

t∈T

(
Qs

t gst − Qb
t gbt

)

+
∑

t∈T

λt

[
∑

i∈I

(
pci,t − pdi,t

)+ Dt −Wt

]
, (35)

s.t. rm ≥ 0, gbt ≥ 0, gst ≥ 0,∀t ∈ T.

The objective (35) is defined as the PFC payment from the
grid minus the PFC payments to batteries plus the energy pay-
ments from the grid, batteries, and load. The market clearing
conditions are

[λt] :
∑

i∈I

(
pdi,t − pci,t

)+ gbt − gst = Dt −Wt,∀t ∈ T, (36a)

[μt] :
∑

i∈I

(
adi,t + aci,t

) = 1,∀t ∈ T, (36b)

[
πn

t

]
:
∑

i∈I

rn
i,t = rm,∀n ∈ {d,c}, t ∈ T, (36c)

where [ · ] represents the multipliers, namely prices.

B. Market Properties

Here, we theoretically analyze the local market. Given
the prices �, both the individual battery problem (34) and
the manager problem (35) are convex programs, for which
Karush–Kuhn–Tucker (KKT) conditions are necessary and
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sufficient for optimality. Thus, the conditions (36) and the
KKT conditions of problems (34) and (35) determine the mar-
ket equilibrium. Proposition 1 shows the relation between the
equilibrium and the SOCP.

Proposition 1 (Market Equilibrium): The scheduling result
�∗ := {g∗, p∗, a∗, r∗} (given by the optimal solution to the
SOCP) and the pricing result �∗ := {λ∗,μ∗,π∗} (given by
the optimal multipliers of the SOCP) constitute a market
equilibrium that satisfies the following properties.

1) Given the prices �∗, the schedule �∗ provides the
optimal solutions to the individual battery problem (34)
and the system manager problem (35).

2) The schedule �∗ satisfies the market clearing condi-
tions (36).

It is obvious that {�∗,�∗} corresponds to a point satis-
fying the KKT conditions of the SOCP. One can find that
{�∗,�∗} also satisfies the KKT conditions of problems (34)
and (35). Thus, �∗ provides the optimal solutions to the two
problems. The detailed proof of Proposition 1 is given in
Appendix B.

In addition, the local market holds two properties: individ-
ual rationality and balanced budget, which are described in
the following two propositions. The proofs are presented in
Appendix.

Proposition 2 (Individual Rationality): The utility of bat-
tery i, the objective function in (34), is always non-negative
in the market.

Proposition 3 (Balanced Budget): For each service, the
payment made is equal to the payment received in the market
(i.e., no budget deficit or surplus).

1) For load shifting, the payment made by the load is equal
to the payments received by the grid and batteries:

λ∗t (Dt −Wt) = Qb
t gb∗t − Qs

t gs∗t

+
∑

i∈I

λ∗t
(
pd∗i,t − pc∗i,t

)
,∀t ∈ T. (37)

2) For balancing, the payment made by the load is equal
to the total payment received by the batteries:

μ∗t =
∑

i∈I

μ∗t
(
ad∗i,t + ac∗i,t

)
,∀t ∈ T. (38)

3) For PFC, the payment made by the grid is equal to the
total payment received by the batteries:

Qmr∗m =
∑

i∈I

∑

t∈T

(
πd∗

t rd∗i,t + πc∗
t rc∗i,t

)
. (39)

Equations (37) and (39) imply that the manager objective
function in (35) is equal to zero at the equilibrium.

VI. NUMERICAL RESULTS

A. Parameter Setting

Set up a system with I = 3 batteries (denoted as B1, B2, and
B3) and a scheduling horizon of T = 24 hours. Load param-
eters (Dt −Wt) (see Appendix E) are obtained by scaling the
hourly consumption and wind generation forecast data from
the French grid [19]. Set σD,t = 0.2Dt and σW,t = 0.2Wt [20].
Based on the French electricity tariffs [24], grid energy buy

Fig. 3. System costs under the proposed PADM-based heuristic (Algorithm 1)
and CPLEX (exact algorithm). PFC guarantee: constraint (33) is included in
Algorithm 1.

Fig. 4. The committed power rm returned by Algorithm 1 versus the PFC
price Qm. PFC guarantee: constraint (33) is included in Algorithm 1.

prices are set to Qb
t = 17.98 e cent/kWh for peak hours t ∈

{8, . . . , 22} and Qb
t = 13.44 e cent/kWh for off-peak hours

t ∈ {1, . . . , 7, 23, 24}. Set Qs
t = 0.6Qb

t . The PFC price is set to
Qm = 17.32 e cent/kW that is the average price of frequency
containment reserve in Dec. 2019 in France [25]. By analyz-
ing the French frequency deviation data in Dec. 2019 [19] and
selecting fdb = 10 mHz and fmax = 100 mHz (see Fig. 1),
we get sampling values Ed = 0.0661 h, Ec = 0.0669 h,
σd = 0.0524 h, and σc = 0.0452 h. The parameters of battery
i ∈ {1, 2, 3} are set as follows: Cn2,i = 0.02 e cent/kWh2,
Cn1,i = 1 e cent/kWh, ηdi = ηci = 0.9, Pmaxi = 1 MW,
{SB1 , SB2 , SB3 } = {4, 6, 8} MWh, Smaxi = 0.9SBi , Smini = 0.1SBi ,
s1,i = 0.25SBi , and εp = εs = 0.5. Here, the batteries only
differ in the capacity parameters, so we can see how capacity
impacts the results.

B. Computational Results

For the proposed PADM-based heuristic (Algorithm 1), we
initialize ρ0i,t = ρ1i,t = 1 and set �ρ = 10, θ = 0.95.
As shown in Fig. 3, the time spent by the proposed heuris-
tic to solve the MISOCP (25) is short. The resulting system
cost and time spent increase after the PFC guarantee con-
straint (33) is included. The MISOCP (25) can be exactly
solved by CPLEX, but it is greatly time-consuming due to
the big problem size. For comparison, we test CPLEX with
time limits and no PFC guarantee. It can be seen in Fig. 3
that the proposed solution, [20 s] e130.35, is quite compara-
ble to the CPLEX solutions, (30 min) e130.78, (1 h) e126.54,
(2 h) e125.10, showing that the proposed heuristic can return
high-quality solutions quickly.

Note that apart from the [30 s] solution, all other solu-
tions in Fig. 3 have zero PFC committed power, namely
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Fig. 5. Scheduling results. (a) Scheduled discharging power of batteries for load shifting, pdi,t . (b) Scheduled charging power of batteries for load shifting,

pci,t . (c) Energy traded with the grid, {gbt , gst }. (d) Participation factors of batteries for real-time balancing, {adi,t, aci,t}. (e) Discharging power committed by

batteries for PFC, rdi,t . (f) Charging power committed by batteries for PFC, rci,t .

r∗m = 0. This means that providing PFC service may not
be a good cost-minimizing choice under our parameter set-
ting. One of the main reasons may be the relatively low
PFC price Qm. To further examine the impact of Qm, we
increase Qm and show the solutions returned by Algorithm 1
in Fig. 4. It is shown that the relation between Qm and
rm is not significant when Qm is relatively low. If Qm is
high enough, the benefit from PFC will attract the system
to increase the committed power. In Fig. 4, the system has
a positive committed power under Qm ≥ 60 e cent/kW
even if the PFC guarantee constraint (33) is not included in
Algorithm 1.

C. Scheduling Results

Fig. 5 shows the scheduling results under the [30 s] solu-
tion in Fig. 3. From Fig. 5(a) and Fig. 5(b), one can see that
B2 and B3 are mostly discharged in peak hours and charged
in off-peak hours. This is an economical decision since the
system can buy less amount of expensive peak-hour energy
from the grid. But, B1 acts a bit differently, discharging in
off-peak hours. This results from the PFC guarantee con-
straint (33) that ensures at least one discharging battery and
one charging battery at each hour. B2 and B3 have higher
capacities than B1, i.e., B2 and B3 can store more energy.
This is the reason why B2 and B3 (rather than B1) are mostly

charged in off-peak hours. On the operating day, the sched-
uled discharging/charging power will be adjusted to respond
to the realization of uncertainty. Thus, the pattern of par-
ticipation factors in Fig. 5(d) is consistent with the pattern
composed of Fig. 5(a) and Fig. 5(b). For PFC, it can be found
from Fig. 5(e) and Fig. 5(f) that the PFC committed power,
±180.82 kW, is collectively provided by B1, B2, and B3,
satisfying constraints (8).

Fig. 6 shows how the safety parameters {εp, εs} impact
the scheduling results of B1 under uncertainty realization.
In Fig. 6, the integer solution is fixed and provided by the
[30 s] solution. Each subfigure in Fig. 6 contains 1000 real-
izations of the system uncertainty vector e, in which each
entry is assumed to follow a normal distribution. The power
curves in Fig. 6(a) and Fig. 6(b) are given by pn

i,t(e) + rn
i,t,

and the energy curves in Fig. 6(c) and Fig. 6(d) are given
by si,t+1(e) in (12). It is shown that a smaller safety param-
eter leads to a smaller chance to violate the power/energy
bounds. Also, a smaller safety parameter means a more con-
servative solution, leading to a higher system cost, as shown
in Fig. 7. One can adjust the safety parameters to strike a
balance between the system cost and power/energy bound
violation. In real situations, batteries are not the only type
of resources responding to uncertainty realization. Practical
systems would have other resources such as local generators
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Fig. 6. Actual power and energy state of B1 with safety parameters (a) εp = 0.5, (b) εp = 0.1, (c) εs = 0.5, and (d) εs = 0.1. Each gray curve represents
a realization of uncertainty. The power bounds of B1 are given by [0, 1000] kW. The energy bounds of B1 are given by [400, 3600] kWh.

Fig. 7. System cost versus safety parameters (εp = εs). PFC guarantee: the
integer solution is fixed and given by the [30 s] solution. No PFC guarantee:
the integer solution is fixed and given by the [20 s] solution.

and controllable loads, which can be used to compensate
for the amount of battery power/energy violation on the
operating day.

D. Pricing Results

Fig. 8 shows our pricing results under the [30 s] solution.
It can be seen that each battery has a positive utility, which
validates the property of individual rationality (Proposition 2).
Also, the utilities, incomes, and costs generally go up as the
battery capacity increases. For example, B3 has the highest
capacity, so it can contribute more to service provisioning. As
a result, it is used the most (the highest operating cost) and
earns the most. The pricing results of other solutions in Fig. 3
are similar to that of the [30 s] solution. The major difference
is that the other solutions have zero PFC committed power, so
their PFC incomes are all zero.

Fig. 8. Pricing results. The utility is equal to the incomes minus the cost.

To further explore the relation between battery utility and
capacity, we increase the capacity of B1, SB1 , and show the
consequences in Fig. 9, where the energy to power ratio of
B1, SB1 /Pmax1 = 4 h, is kept unchanged. The integer solution
is fixed and given by the [30 s] solution. It can be seen that
the utility of B1 grows if B1 capacity increases. The reason
is that B1 can earn more by using more capacity to pro-
vide services. More capacity also leads to less system cost,
as shown in Fig. 9(b). An important observation is that the
rate of system cost reduction decreases as B1 capacity goes
up. This is because we consider quadratic battery usage costs
in (18). This is also reflected in Fig. 9(a), where the rate of
B1 utility growth is slowing down, meaning that the marginal
benefit of capacity is decreasing. Another observation is that
the utility of B3 (8 MWh) is higher than the utility of B1
at 9 MWh in Fig. 9(a). This implies that a higher capacity
does not always lead to a higher utility. But, the capacity
limits how much a battery can be used. In general, under

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 15,2022 at 09:53:13 UTC from IEEE Xplore.  Restrictions apply. 



5040 IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 6, NOVEMBER 2021

Fig. 9. Battery utilities and costs changed with B1 capacity. The capacities
of B2 and B3 are fixed to 6 and 8 MWh, respectively. The cost of a battery
reflects how much the battery is used.

the proposed pricing method, a battery earns more if it is
used more (see B1); a battery earns less if it is used less
(see B2 and B3).

VII. CONCLUSION

In this paper, we proposed day-ahead scheduling and pric-
ing methods for battery energy storage to provide multiple
services including load shifting, real-time balancing, and PFC.
The original stochastic chance-constrained scheduling problem
was reformulated to an MISOCP. To obtain suboptimal solu-
tions quickly, we developed a PADM-based heuristic to solve
the MISOCP. By fixing the integer solution returned by the
heuristic, we employed the duality of the SOCP to price the
three services in the local market. We also provided theoreti-
cal analysis of the market properties. Numerical results show
that the proposed heuristic is computationally efficient, and
the pricing results can guarantee a positive utility for each bat-
tery, i.e., service incomes are enough to cover battery usage
costs.

APPENDIX A
REDUNDANCY OF gbt gst = 0 AND adi,ta

c
i,t = 0

Suppose that there is a solution to the MISOCP (25) with
gb∗t > 0 and gs∗t > 0 for a fixed t. Discuss two cases:

1) gb∗t ≥ gs∗t . In this case, let gb′t = gb∗t −gs∗t and gs′t = 0.
A practical system usually has Qb

t > Qs
t > 0, so we get

Qb
t gb∗t − Qs

t gs∗t > Qb
t (gb∗t − gs∗t ) = Qb

t gb′t .

2) gb∗t < gs∗t . Here, let gs′t = gs∗t − gb∗t and gb′t = 0. We
have Qb

t gb∗t − Qs
t gs∗t > Qs

t (gb∗t − gs∗t ) = −Qs
t gs′t .

Both cases imply that {gb′t , gs′t } costs less in trading energy
with the grid than {gb∗t , gs∗t }. As the MISOCP (25) is a cost-
minimizing problem, a good solution must satisfy gbt gst =0.

If we fix xn
i,t = 0 in (23), then we have pn

i,t = zn
i,t =

rn
i,t = yn

i,t = an
i,t = 0. Therefore, any solution meeting

constraints (16) and (23) also meets adi,ta
c
i,t = 0.

APPENDIX B
PROOF OF PROPOSITION 1

Proof: Let Yi denote the decision vector of battery i with
Yi := {pi, ai, ri, wi} where wi := {yi, zi, pri}. Define a convex
function hi(Yi) such that hi(Yi) ≤ 0 holds if and only if Yi sat-
isfies the constraints of problem (34). Considering the prices �

are constants, the KKT conditions of battery i’s problem (34)
for all i ∈ I are given by

∂ϕdi,t

∂pdi,t
− λt + βhi

∂hi

∂pdi,t
= 0,∀i ∈ I, t ∈ T, (40a)

∂ϕci,t

∂pci,t
+ λt + βhi

∂hi

∂pci,t
= 0,∀i ∈ I, t ∈ T, (40b)

∂ϕn
i,t

∂an
i,t
− μt + βhi

∂hi

∂an
i,t
= 0,∀n ∈ {d,c}, i ∈ I, t ∈ T, (40c)

∂ϕn
i,t

∂rn
i,t
− πn

t +βhi
∂hi

∂rn
i,t
= 0,∀n ∈ {d,c}, i ∈ I, t ∈ T, (40d)

∇wi

∑

n∈{d,c},
t∈T

ϕn
i,t + βhi ∇wi hi = 0,∀i ∈ I, (40e)

[
βhi
]

: hi(Yi) ≤ 0,∀i ∈ I, (40f)

βhi ≥ 0, βhi hi(Yi) = 0,∀i ∈ I. (40g)

By the market clearing conditions (36), the objective in (35)
can be written as

max
g,rm

Qmrm − rm
∑

t∈T

(
πd

t + πc
t

)

+
∑

t∈T

(
Qs

t gst − Qb
t gbt

)+
∑

t∈T

λt
(
gbt − gst

)
.

Considering the prices � are constants, the KKT conditions
of the system manager problem (35) are given by

− Qm +
∑

t∈T

(
πd

t + πc
t

)− βm = 0, (41a)

Qb
t − λt − βbt = 0,∀t ∈ T, (41b)

− Qs
t + λt − βst = 0,∀t ∈ T, (41c)

[βm] : rm ≥ 0, (41d)[
βbt
]

: gbt ≥ 0, (41e)[
βst
]

: gst ≥ 0, (41f)

βm ≥ 0, βbt ≥ 0, βst ≥ 0,∀t ∈ T, (41g)

βmrm = 0, βbt gbt = 0, βst gst = 0,∀t ∈ T. (41h)

One can find that the KKT conditions (40) and (41) com-
bining with the market clearing conditions (36) are exactly
the KKT conditions of the SOCP. As {�∗,�∗} corresponds
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to the optimal KKT point of the SOCP, {�∗,�∗} also
satisfies (40), (41), and (36). This completes the proof.

APPENDIX C
PROOF OF PROPOSITION 2

Proof: Let u∗i denote the maximum utility of battery i
at the market equilibrium when battery i provides the three
services. Following Proposition 1-1), u∗i can be derived from
the following problem:

u∗i = max
pi,ai,ri,
yi,zi,pri

∑

t∈T

[
λ∗t
(
pdi,t − pci,t

)+ μ∗t
(
adi,t + aci,t

)+ πd∗
t rdi,t

+ πc∗
t rci,t

]−
∑

t∈T,
n∈{d,c}

ϕn
i,t

(
pn

i,t, an
i,t, rn

i,t, pn
i,tr

n
i,t

)
,

s.t. Constraints in problem (34), (42)

where the prices are fixed to the optimal �∗. Let u0
i denote

the maximum utility of battery i when it does not provide any
service, which means

pn
i,t = an

i,t = rn
i,t = 0,∀n ∈ {d,c}, t ∈ T. (43)

This leads to pn
i,tr

n
i,t = 0 from (20). We then have u0

i = 0
according to the utility function in (42). u0

i can be also con-
sidered as the optimal objective value of problem (42) with the
additional constraint (43). Thus, we readily have u∗i ≥ u0

i = 0,
which means that battery i has a non-negative utility if it
provides the three services. This completes the proof.

This conclusion can be generalized to the situations that
u∗i denotes the maximum utility of battery i when it provides
some of the three services in the market, that is, battery i has
a non-negative utility if it provides at least one of the three
services. For example, if battery i only provides load shifting,
we add the constraint an

i,t = rn
i,t = 0 in the MISOCP (25),

the SOCP, and the individual battery problem (34). Then, the
above analysis of problem (42) still holds.

APPENDIX D
PROOF OF PROPOSITION 3

Proof: Load shifting: By Appendix A, the optimal solution
to the SOCP must have gb∗t gs∗t = 0. We discuss three cases:

1) gb∗t > 0, gs∗t = 0. In this case, we have βb∗t = 0 and
λ∗t = Qb

t according to KKT conditions (41).
2) gb∗t = 0, gs∗t > 0. This case has βs∗t = 0 and λ∗t = Qs

t .
3) gb∗t = gs∗t = 0. This case yields βb∗t , βs∗t > 0 and

Qs
t < λ∗t < Qb

t .
As per constraint (1), it can be seen that equation (37) holds
in each of the above three cases. This proves Proposition 3-1).

Balancing: The proof of Proposition 3-2) is straightforward.
Equation (38) follows from constraint (6).

PFC: If r∗m > 0, then we have β∗m = 0 from KKT con-
ditions (41). This leads to Qmr∗m = r∗m

∑
t∈T(πd∗

t + πc∗
t ).

Combining with constraints (8), we readily obtain equa-
tion (39). Note that (39) still holds if r∗m = 0. This completes
the proof of Proposition 3-3).

APPENDIX E
DEMAND AND WIND PARAMETERS (KWH)
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