
Production, Manufacturing and Logistics

Simultaneous lotsizing and scheduling on parallel machines

Herbert Meyr *

Lehrstuhl f €uur Produktion und Logistik, Universit€aat Augsburg, Universit€aatsstrasse 16, 86 135 Augsburg, Germany

Received 28 February 2001; accepted 2 May 2001

Abstract

This paper addresses the simultaneous lotsizing and scheduling of several products on non-identical parallel pro-

duction lines (heterogeneous machines). The limited capacity of the production lines may be further reduced by se-

quence dependent setup times. Deterministic, dynamic demand of standard products has to be met without back-

logging with the objective of minimizing sequence dependent setup, holding and production costs.

The problem is heuristically solved by combining the local search metastrategies threshold accepting (TA) and

simulated annealing (SA), respectively, with dual reoptimization. Such a solution approach has already proved to be

successful for the single machine case. The solution quality and computational performance of the new heuristics are

tested by means of real-world problems gathered from industry. � 2002 Elsevier Science B.V. All rights reserved.

Keywords: Metaheuristics; Integer programming; Simultaneous lotsizing and scheduling; Network flows; Production

1. Introduction

When producing standard products, e.g. con-
sumer goods, the following situation is very com-
mon: a large number of final items has to be
produced on several parallel production lines, i.e.
on automatic flow lines each of them consisting of
many interdependent work stations. Since material
flows automatically between all work stations of a
production line, each production line can be con-
sidered as a single planning unit (‘‘machine’’).
Deterministic dynamic demand (usually demand
estimates because production orders are not

available on time) is to be met without back-log-
ging. The production lines offer – at least partially
– the same services and thus can be used alterna-
tively. However, they do not have to be technically
identical. Since commonly such production lines
are highly utilized, they represent potential
bottlenecks.
The final items can be assigned to a few setup

families. Changeovers between two items of the
same family are not a problem and thus can be
disregarded. Changeovers between two items of
different setup families, however, may incur sig-
nificant setup costs and setup times that are se-
quence dependent, in general.
In such a situation, decisions have to be taken

about the sizes of production lots, about the as-
signment of these lots to single production lines,
and about the line-specific sequences of the lots.

European Journal of Operational Research 139 (2002) 277–292

www.elsevier.com/locate/dsw

*Tel.: +49-821-598-4041; fax: +49-821-598-4215.

E-mail address: herbert.meyr@wiso.uni-augsburg.de (H.

Meyr).

0377-2217/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0377-2217 (01 )00373-3



Thereby, all relevant costs – sequence dependent
setup costs, inventory holding costs and variable
production costs – should be minimized. The de-
mand of each product (setup family) has to be
satisfied in a timely manner and the limited ca-
pacity of each line is to be respected.
Due to the sequence dependent setup times, the

capacity that is finally available for production on
a specific line is known only when the size and the
sequence of the respective lots have been deter-
mined. Therefore, the lotsizing, line assignment and
lot scheduling have to be done simultaneously. Note
that this planning problem relates to single stage
scheduling on heterogeneous parallel machines,
but is more difficult due to the lotsizing aspects. In
order to emphasize the practical importance of
simultaneous lotsizing and scheduling for business
applications of the type described above, the term
‘‘production line’’ will be retained in the following
instead of using the more general and probably
better known term ‘‘machine’’.
Literature reviews on lotsizing in general and

simultaneous lotsizing and scheduling especially
are given in [8,16]. Over the last years, significant
progress has been made in solving single line
problems with (sequence dependent) setup times.
Salomon et al. [19] extend the Discrete Lotsizing

and Scheduling Problem with sequence dependent
setup costs, formerly proposed by Fleischmann
[10], for Sequence Dependent setup times
(DLSPSD). The DLSPSD is a small time bucket
model with the special property that a respective
product is either produced over a full (but rather
short) micro-period or not at all (all-or-nothing
assumption). Due to this time structure, setup
times have to be multiples of these fixed time
buckets as well. Salomon et al. solve small and
medium sized problems to optimality. In [7,20], the
restrictive all-or-nothing assumption is weakened.
At most two products are admitted per micro-pe-
riod. Both papers, however, do not present com-
putational results.
The General Lotsizing and Scheduling Problem

with sequence dependent Setup Times (GLSPST,
[17]) is a generalization of the above models be-
cause the number of lots/products per period can
unrestrictedly be varied. To achieve this, the
planning horizon is divided into large time buckets

– in the following also denoted as macro-periods.
In [17], practical problems of the consumer goods
industry can successfully be solved by novelly
combining local search strategies with dual reop-
timization.
Jordan and Drexl [13] present the Batch Se-

quencing Problem (BSP), a scheduling model
minimizing inventory holding and setup costs.
Unfortunately, lot-splitting is not possible, but
would be necessary if demand is specified by de-
mand estimates instead of customer orders. How-
ever, if demand is a priori split into sufficiently
small buckets, an equivalence between the BSP
and the DLSPSD can be shown.
Simultaneous lotsizing and scheduling of par-

allel production lines is not often discussed in the
literature.
De Matta and Guignard [5,6] present two small

time bucket models for non-identical production
lines both being solved by Lagrangean relaxation.
Only one product can be produced per micro-pe-
riod. In [5], the all-or-nothing assumption is valid
and setup times are formulated as a production
loss during setup periods (thus being limited by the
length of a micro-period). In [6], the all-or-nothing
assumption is relaxed, but setup times are disre-
garded, too. Jordan [12] extends the BSP for
identical production lines. However, only prelim-
inary results are shown.
As an incentive for future (academic) algorith-

mic developments, Baker and Muckstadt [3] pre-
sent the CHES problems, a collection of practical
problems that have been gathered by Chesapeake
Decision Sciences. The problem definition also
includes an interesting model formulation. The
CHES problems comprise parallel production
lines and sequence dependent setup costs, but no
setup times. Notably (and quite uncommonly in
the literature), sales revenues are maximized.
Kang et al. [14] designed the sequence splitting

model especially for solving the CHES problems:
the entire schedule is split into a predefined num-
ber of subsequences, thus decomposing the overall
planning problem into tractable subproblems.
Column Generation and Branch and Bound are
the basic elements of the solution heuristics of
Kang et al. Detailed results of their experiments
are shown in Section 4. Even though the authors

278 H. Meyr / European Journal of Operational Research 139 (2002) 277–292



affirm that setup times can be incorporated into
their model, no computational results are given.
Since these heuristics for parallel production

lines either comprise a rather inflexible time
structure (based on small time buckets) or disre-
gard (sequence dependent) setup times, there still
remains a need for new, powerful and more gen-
eral solution procedures.
In the remainder of the paper, such a solution

procedure will be proposed by extending the
GLSPST solution approach for parallel produc-
tion lines. The GLSPST is selected because it is the
broadest formulation among the single line mod-
els. As will be shown, dual reoptimization can
analogously be applied if several production lines
are given. However, the efficiency of such a solu-
tion method has to be investigated.
In Section 2, the GLSPST is extended by par-

allel production lines, thus resulting in the General
Lotsizing and Scheduling Problem for Parallel
Production Lines (GLSPPL). In Section 3, two
solution procedures for the GLSPPL are presented
both combining local search strategies (threshold
accepting and simulated annealing) with dual re-
optimization. These solution procedures prove to
be quite flexible and will be broadened to meet the
CHES problems [3], too.
The computational behaviour of this solution

approach is tested in Section 4. With the help of
this approach, practical problems of the consumer
goods industry and the CHES problems are in-
vestigated.

2. Model formulation

Consider products j ¼ 1; . . . ; J to be scheduled
on l ¼ 1; . . . ; L parallel production lines over a fi-
nite planning horizon consisting of macro-periods
t ¼ 1; . . . ; T with given length. A macro-period, for
example a week or a month, is divided into a fixed
number of non-overlapping micro-periods with
variable length. Since the production lines can be
scheduled independently, this is done for each line
separately. Slt denotes the set of micro-periods s
belonging to macro-period t and production line l.
All micro-periods are put in the order
s ¼ 1; . . . ; Sl.

The length of a micro-period is a decision
variable, expressed by the quantity produced in the
micro-period on a respective line. A sequence of
consecutive micro-periods, where the same item is
produced on the same line, defines a lot and the
quantity produced during these micro-periods de-
fines the size of the lot. Therefore, a lot may con-
tinue over several micro- and macro-periods and is
independent of the discrete time structure of the
macro-periods. Note that micro-periods constitute
both the product sequence and the lotsizes.

As a consequence of the fixed number Slt, a
lot may contain idle micro-periods with produc-
tion quantity zero. If – after an idle micro-period
– the same item is produced on the same line
again, the setup state is conserved, i.e. no further
setup is necessary. However, the solution proce-
dures presented in this paper are able to work
with a variable number of micro-periods per
macro-period/line and are able to avoid idle
micro-periods.

We use the following notation to formulate the
problem:

Data
Slt set of micro-periods s belonging to

macro-period t and line l
Klt capacity (time) of production line l

available in macro-period t
alj capacity consumption (time) needed

to produce one unit of product j on
line l

mlj minimum lotsize of product j (units)
if produced on line l

hj holding costs of product j (per unit
and per macro-period)

clj production costs of product j (per
unit) on line l

slij setup costs of a changeover from
product i to product j on line l

stlij setup time of a changeover from
product i to product j on production
line l (time)

djt demand for product j in macro-pe-
riod t (units)

Ij0 initial inventory of product j at the
beginning of the planning horizon
(units)

H. Meyr / European Journal of Operational Research 139 (2002) 277–292 279



ylj0 equals 1, if line l is set up for product
j at the beginning of the planning
horizon (0 otherwise)

Variables
Ijt P 0 inventory of product j at the end of

macro-period t (units)
xljs P 0 quantity of item j produced in micro-

period s on line l (units)
yljs 2 f0; 1g setup state: yljs ¼ 1, if line l is set up

for product j in micro-period s
(0 otherwise)

zlijs P 0 takes on 1, if a changeover from
product i to product j takes place on
line l at the beginning of micro-pe-
riod s (0 otherwise)

We formulate the GLSPPL which is a
straightforward extension of the GLSP without
and with setup times [11,17]:
GLSPPL:

minimize
X
t;j

hjIjt þ
X
l;i;j;s

slijzlijs þ
X
l;j;s

cljxljs ð1Þ

subject to

Ijt ¼ Ij;t�1 þ
X
l;s2Slt

xljs � djt 8t; j; ð2Þ

X
j;s2Slt

aljxljs6Klt �
X
i;j;s2Slt

stlijzlijs 8l; t; ð3Þ

xljs6
Klt
alj
yljs 8l; j; s; ð4Þ

xljs Pmljðyljs � ylj;s�1Þ 8l; j; s; ð5Þ

X
j

yljs ¼ 1 8l; s; ð6Þ

zlijs P yli;s�1 þ yljs � 1 8l; i; j; s: ð7Þ

Inventory holding costs, sequence dependent
setup costs and line specific production costs are
minimized (1). Note, if production costs clj are
identical for all lines ðclj 
 cj 8l; jÞ, the total pro-
duction costs

P
j;t cjdjt are irrelevant for optimi-

zation and can be disregarded.
The inventory balancing constraints (2) to-

gether with Ijt P 0 ensure that demand is met

without back-logging. Limited capacity is further
reduced by setup times (3). Because of (4) and (6)
production can only take place if the line is set up
for the respective product and one and only one
setup state is defined per line and micro-period. In
order to change the setup state from product i to
another product j, a changeover has to be executed
entailing a setup time stlij and setup costs slij. Such
a changeover has to be started and finished within
the same macro-period. Since macro-periods are
large time buckets and the setup state is conserved
after idle periods, this assumption does not seem
to be crucial.
Minimum lotsizes (5) are introduced in order to

avoid setup changes without product changes,
which could lead to a wrong evaluation of the
setup costs (and setup times, respectively) in an
optimal solution if the setup cost matrix (of line l)
does not satisfy the triangle inequality (8):

slik þ slkj P slij 8i; j; k ¼ 1; . . . ; J : ð8Þ

This situation occurs, for example, in chemical
industries where certain product sequences i; j re-
quire cleaning at the changeover in order to avoid
contamination. If the cleaning can be replaced by
the insertion of a ‘‘rinsing’’ product k, then (8) is
violated.
The connection between setup state indicators

and changeover indicators is established by (7).
Note that only the inventory balancing con-
straints (2) link the parallel production lines to-
gether.

3. Solution procedures

The GLSPST comprises the special case of the
GLSPPL where only a single production line is
given. The GLSPST has successfully been solved
by combining local search metastrategies with dual
reoptimization [17]. Therefore, it seems worth
checking whether the principle of dual reoptim-
ization is applicable to the GLSPPL, too. Before
doing so, we briefly summarize the solution pro-
cedures for the GLSPST in order to keep the paper
self-contained. For a more detailed presentation
the reader is referred to [17].

280 H. Meyr / European Journal of Operational Research 139 (2002) 277–292



3.1. Solution procedures for the GLSPST

Since only a single production line is regarded,
the index l denoting the production line(s) is
skipped within this section.

3.1.1. Fixing the setup pattern by local search
A solution for the GLSPST is characterized by

the setup pattern yjs (implying zijs) and the pro-
duction quantities xjs that are assigned to this
setup pattern. A lot consists of a sequence of
production quantities of the same product. The
cost of a solution is the sum of setup costs caused
by the setup pattern and holding costs caused by
the respective lots (remember that production
costs are irrelevant in the single line case). If the
setup pattern is fixed, i.e., if the sequence of the lots
is known, the problem of determining lotsizes that
fit to the setup pattern and cause minimal holding
costs is a minimum cost network flow problem
(MCFP).
A neighbor of a current solution of the GLSPST

is another solution whose setup pattern is slightly
changed and whose lotsizes are determined by a
specific procedure that solves the new MCFP.
These changes in the setup pattern may result from
insertion of a new lot between two lots of the
current solution, deletion of a lot of the current
solution or an exchange of two lots of the current
solution. These operations are called neighborhood
operations.
Starting from an initial (current) solution, a

candidate for a new neighbored solution is selected
by applying one of these neighborhood operations.
The neighborhood operation may be chosen ran-
domly or in a deterministic way as described in
[11], for example. The respective product(s) for
insertion, deletion or exchange and the respective
micro-period(s) are drawn at random. A candidate
is accepted as a new current solution if its costs are
lower than the costs of the current solution plus
some positive constant Th.
Depending on the choice of Th, the two local

search procedures threshold accepting (TA, [9]) and
simulated annealing (SA, [15]) can be implemented.
In the first case, Th is directly chosen from a se-
quence of decreasing threshold values. In the sec-
ond case, Th is determined by Th :¼ s � j logðqÞj,

where s is the (decreasing) temperature of the an-
nealing process and q is a random number drawn
from a uniform distribution.
The GLSPST is NP-complete (and thus the

GLSPPL, too). Therefore, finding a feasible initial
solution to start the neighborhood search is a very
difficult task. To bypass this problem an infeasible
initial solution is used as a starting point for the
local search. For that purpose, the MCFP is
slightly modified, so that actually infeasible can-
didates can also be accepted: a fictitious macro-
period 0 – without capacity constraints – is intro-
duced. Production of a quantity x0j of item j within
this period is punished with a penalty cost h0j x

0
j

which expresses the degree of infeasibility and has
to be high enough to prefer feasible solutions to
infeasible ones. The initial (infeasible) setup pat-
tern is then defined by assigning the complete
production for all products to the fictitious period
0 thus suppressing production in all real macro-
periods t ¼ 1; . . . ; T .

3.1.2. Dual reoptimization
One runs into trouble with computation times if

trying to solve each MCFP to optimality by
starting from scratch. On the other hand, solving
the MCFP heuristically is – for sake of solution
quality – not particularly desirable, too.
Dual reoptimization bypasses these two prob-

lems, because it is able to recognize and refuse too
expensive candidates very quickly, but also to
evaluate the minimal holding costs of each ac-
ceptable candidate.
The above local search strategies refuse a can-

didate if its objective function value exceeds the
objective function value of the current solution by
Th. Without loss of generality the candidate can
also be refused if the cost of the candidate is re-
placed by a lower bound. Since the objective
function value of a feasible solution of the dual
problem is a lower bound to the optimal solution
of the corresponding primal problem, a dual net-
work flow algorithm is used to solve the MCFP.
Thereby, a sequence of increasing lower bounds to
the MCFP is generated and a candidate is refused
as soon as the first of these lower bounds exceeds
Th. If none of the lower bounds exceeds Th, the
dual network flow algorithm terminates in an op-

H. Meyr / European Journal of Operational Research 139 (2002) 277–292 281



timal solution of the MCFP and the candidate has
to be accepted.
For each candidate to be tested, a lot of infor-

mation is available in advance since it differs from
the current solution only by slight changes of the
problem data. Solving the candidate’s MCFP by
starting from scratch would ignore this informa-
tion. Therefore, time-savingly exploiting this in-
formation, the current solution is just reoptimized
by the dual network flow algorithm.
As compared to solving the MCFP heuristically

by a greedy algorithm (stepping backward in time
and determining the lotsizes per macro-period in
order of descending relative holding costs; cf. [11,
Section 4.4; 17, Section 4.2]), the dual reoptim-
ization algorithms yield better solution quality in
shorter computation time.

3.2. Solution procedures for the GLSPPL

The solution procedures for the GLSPST es-
sentially comprise the two tasks ‘‘fixing the setup
pattern’’ by local search and ‘‘solving the remain-
ing problem’’ (the MCFP) by dual reoptimization.
In order to adapt the GLSPST solution procedures
for the GLSPPL, these two tasks have to be
thought over.

3.2.1. Fixing the setup pattern
The GLSPPL is harder to solve than the

GLSPST because several production lines can
satisfy a respective product’s demand – maybe
even more than one line producing the same
product at the same time. Nevertheless, the setup
patterns of the different lines can be fixed inde-
pendently. For that purpose, the neighborhood
operations of the local search framework in Sec-
tion 3.1.1 are not applied until the affected pro-
duction line has been drawn at random from a
uniform distribution. Note that a candidate is re-
fused anyway, if its setup patterns violate

X
j

aljmlj
X

s2Slt ; i6¼j
zlijs

 !
6Klt �

X
i;j;s2Slt

stlijzlijs ð9Þ

for any production line l or macro-period
t ¼ 1; . . . ; T . If (9) is violated, the (net) capacity
(after subtracting already known setup times) is

not high enough to satisfy the minimum lotsizes
for a given setup pattern.
When the setup sequences of the lots have been

changed, the computation of the corresponding
lotsizes and the detailed scheduling (without se-
quencing) once more is left open to the second task
‘‘solving the remaining problem’’.
To construct an initial solution for the

GLSPPL, again the whole demand is assigned to
the fictitious period t ¼ 0. Thereby the penalty
costs are computed via h0j :¼ hj þmaxl;i fslijg. (If
production costs clj are significantly high, one
should increase the penalty costs by maxl fcljg.)
No further modifications concerning the local

search are necessary when upgrading the GLSPST
algorithms to several production lines.

3.2.2. Solving the remaining problem
The main difficulties are the identification and

solution of the problem remaining after the setup
patterns of the production lines have been fixed.
As already mentioned, an ordinary MCFP has to
be solved if there is only a single production line.
This is not valid for the GLSPPL any more as

soon as several non-identical lines are given. In this
case, the remaining problem can be formulated as a
Generalized Network Flow Problem (GNFP, cf.
[1,18], for example) of the following type:
GNFP:

minimize
X

m;n:ðm;nÞ2A
cmnXmn ð10Þ

subject to:X
m:ðm;nÞ2A

lmnXmn �
X

m:ðn;mÞ2A
Xnm ¼ 0 8n 2 N;

ð11Þ

lmn6Xmn6 umn 8ðm; nÞ 2 A: ð12Þ

The network G ¼ ðN;AÞ consists of a set of
nodes N and a set of arcs A. The problem is the
identification of a flow Xmn for each arc ðm; nÞ 2 A
so that the total costs are minimized (10). Thereby,
cmn denotes the per unit cost of arc ðm; nÞ. The flow
Xmn on arc ðm; nÞ is bounded by some lower bound
lmn and some upper bound umn (12). For each node

282 H. Meyr / European Journal of Operational Research 139 (2002) 277–292



n 2 N, the total inflow
P

m:ðm;nÞ2A lmnXmn has to
meet the total outflow

P
m:ðn;mÞ2A Xnm (11).

Contrary to an ordinary MCFP, the network G
is a so-called network with losses and gains. This is
caused by the (arc) multipliers lmn decreasing the
flow on arc ðm; nÞ if lmn < 1 and increasing the
flow on arc ðm; nÞ if lmn > 1. If lmn ¼ 1 for all
ðm; nÞ 2 A, GNFP reduces to an ordinary MCFP
again.
Fig. 1 and Table 1 show how to interpret the

GNFP. In Fig. 1, an example for a network
G ¼ ðN;AÞ with L ¼ 2 production lines, J ¼ 2
products and T ¼ 2 macro-periods (plus the ad-
ditional fictitious period 0) is given.
The following nodes are used:

• L � T capacity nodes nClt and L dummy nodes nDul
are mandatory for modeling the limited capacity
of production line l in macro-period t.

• J � T demand nodes nDjt are – among other things
– necessary to represent the demand of product j
in macro-period t.

• Ending inventory may be built up due to mini-
mum lotsizes. For this reason J ending inven-
tory nodes nEj have been introduced.

• J dummy nodes nSj are, for example, useful in
modeling the unlimited capacity of the fictitious

period t ¼ 0 and in assigning the penalty costs to
the products j.
Depending on the arc, the flow is measured in

the two different dimensions ‘‘units of product
quantity’’ ½UP � and ‘‘units of time’’ ½UT �. The flow
Xmn on a production arc ðm; nÞ ¼ ðnClt ; nDjt Þ, for ex-
ample, is measured in the dimension ½UT �. It rep-
resents the share of the (net) capacity of line l in
macro-period t which is used for producing j. As
soon as this flow is entering node nDjt , it is trans-
formed by multiplying by lmn ¼ ð1=aljÞ½UP=UT �.
The output of node nDjt is then measured in units of
product quantity ½UP �.
Altogether, eight different types of arcs link the

nodes of the graph G. The respective lower bounds
lmn, upper bounds umn, costs cmn and gains/losses
lmn are shown in Table 1.
Demand is met because the lower and upper

bounds of the demand arcs are set to djt. Inventory
arcs carry the inventory of a product j in macro-
period t over to the next macro-period t þ 1. End-
ing inventory is allowed, but punished by holding
costs hj which are assigned to the ending inventory
arcs. In order to satisfy the flow balancing con-
straints (11), this ending inventory flows back to the
dummy nodes nSj utilizing the reflux arcs.

Fig. 1. Example for a graph G with L ¼ 2, J ¼ 2 and T ¼ 2.

H. Meyr / European Journal of Operational Research 139 (2002) 277–292 283



The feasibility arcs model the unlimited capac-
ity of the fictitious period t ¼ 0 and establish the
penalty costs h0j . If the flow of all feasibility arcs
amounts to 0, a feasible solution for the GLSPPL
is found. The (net) capacity that can be used for
production on line l in macro-period t is given by
the capacity arcs.
The linking arcs have merely been introduced to

balance the total flow in the network (11).When the
flow is entering a node nDul , the transformation of
goods that has taken place on the capacity arcs is
compensated by the multipliers lmn ¼ alj½UT= UP �.
Table 1 additionally shows the flow X Start

mn which
is optimal for the initial (infeasible) solution (when
production is suppressed in all ‘‘real’’ macro-pe-
riods t ¼ 1; . . . ; T ).
Please note that the above GNFP is well defined

as long as (9) holds. Also note that identical pro-
duction lines (alj 
 aj 8l; j) imply an ordinary
MCFP. This is true because a unitary flow in the
network – measured in units of time – can be es-
tablished after some minor data transformation.
In this case, all multipliers lmn may be set to 1 and
thus are no longer crucial.
A GNFP is harder, i.e. slower, to solve than an

ordinary MCFP. Arc multipliers lmn 6¼ 1 necessi-
tate the use of less convenient data structures. As
opposite to the MCFP, the mathematical opera-
tions multiplication and division are needed to solve
a GNFP. Nevertheless, generalized network flow
algorithms promise to be more efficient than solu-
tion procedures for pure Linear Programs.

In order to enable the early refuse of unac-
ceptable candidates, a dual or primal-dual gener-
alized network flow algorithm is needed. For that
purpose the relaxation algorithm of Bertsekas and
Tseng [4] has been implemented. So the primal
flow balancing constraints (11) are relaxed, but
dual feasibility is always ensured. Each iteration of
the algorithm leads either to a reduction of primal
infeasibility (because of a flow update) or to an
increase of the dual objective function value. When
primal feasibility has been achieved, both the pri-
mal and the corresponding dual GNFP are solved
to optimality.

3.2.3. Accelerating the solution procedures
Section 4 will show that the generalized network

flow algorithm sometimes causes undesirably high
computation times. In order to accelerate the so-
lution process, two modifications are useful:
• Solving the GNFP with the relaxation algorithm
of Bertsekas and Tseng [4], some of the candi-
dates need an excessive number of iterations.
This is due to a high number of flow updates
and/or a very small increase of the dual objective
function value per iteration. To mitigate the in-
fluence of such candidates, a maximum number
of iterations per candidate MaxIt is introduced.
A candidate is refused regardless of its objective
function value if MaxIt is exceeded.

• When testing a new candidate, the current solu-
tion of the GLSPPL is merely reoptimized. An
initial lower bound to the optimal objective

Table 1

Arcs ðm; nÞ of the network G and the corresponding data: lower bounds lmn, upper bounds umn, costs cmn and gains/losses lmn. Ad-
ditionally, the initial flow X Start

mn (exclusive production in the fictitious period) is shown

ðm; nÞ lmn umn cmn lmn Arc type X Start
mn

ðnClt ; nDjt Þ mlj alj ẑzljta Klt �minf1; ẑzljtg clj
alj

1
alj

Production 0

ðnDjt ; nSj Þ djt djt 0 1 Demand djt

ðnDjt ; nDj;tþ1Þ
for t ¼ 1; . . . ; T � 1

0 1 hj 1 Inventory
PT

s¼tþ1 djs

ðnDjT ; nEj Þ 0 1 hj 1 Ending inventory 0

ðnEj ; nSj Þ 0 1 0 1 Reflux 0

ðnSj ; nDj1Þ 0 1 h0j 1 Feasibility
P

t djt

ðnDul ; nCltÞ 0 Klt �
P

i;j;s2St stlijzlijs 0 1 Capacity 0

ðnSj ; nDul Þ 0 1 0 alj Linking 0

a ẑzljt :¼
P

s2Slt ;i6¼j zlijs (number of lots of product j starting in macro-period t).

284 H. Meyr / European Journal of Operational Research 139 (2002) 277–292



function value of the candidate’s GNFP can be
computed very quickly by exploiting the already
known optimal dual prices of the current solu-
tion’s GNFP (cf. [17]). If this initial lower bound
is rather high, the candidate is likely to be re-
fused during reoptimization. Therefore, a candi-
date is refused if its setup costs and its initial
lower bound together exceed the objective func-
tion value of the current solution. In the follow-
ing, this procedure will be called (early) denial of
reoptimization.

Both of these procedures refuse a candidate
regardless of the local search threshold Th. This is
expected to decrease the solution quality for sake
of shorter computation times. The extend of this
phenomenon will be investigated in Section 4.1.
Finally note that – despite of these modifica-

tions – only those candidates will be accepted
whose corresponding GNFP has been solved to
optimality.

3.3. Solving the CHES problems

These solution procedures are quite flexible and
can easily be expanded. They can – after some
minor modifications – even solve the CHES
problems introduced by Baker and Muckstadt [3].

The CHES problems comprise five real world
problems gathered by Chesapeake Decision Sci-
ences. Baker and Muckstadt [3] formulate a
mathematical model describing these problems
and present a ‘‘good’’ solution for each of these
problems.
The problem characteristics are as follows: ex-

cept for the problems CHES3 (single line) and
CHES4 (identical lines), non-identical production
lines are given. The setup state is conserved after
idle periods. There are sequence dependent setup
costs, but no setup times. Except for the problem
CHES1, the triangle inequalities (8) are violated.
The CHES problems coincide with the

GLSPPL formulation of Section 2. In addition to
the GLSPPL, the following requirements have to
be met:

1. Products j are sold in the market realizing prices
pMjt per unit of product j being sold in macro-pe-
riod t. So demand djt is a lower bound on total

sales of product j in macro-period t and can be
exceeded.

2. If j is the last product of the schedule of produc-
tion line l, a fixed ending cost cElj is incurred.

3. For each lot of product j in the schedule of line
l, a maximum lotsize maxlj is to be respected.

4. A lot may not extend over several macro-peri-
ods. Thus, a new setup is mandatory at the be-
ginning of each macro-period.

5. A lot of product j may not be followed by an-
other lot of the same product. Since maximum
lotsizes are assumed, this is a serious restriction.

6. Instead of the initial setup state, a starting oper-
ation is given. Therefore, the type of the first lot
of each production line is known in advance.
The size of such a lot, however, is a decision
variable, again limited by an upper and lower
bound.
Minor modifications are necessary to adapt the

GLSPPL solution procedures to these new re-
quirements:
cf. (1) To model market sales, set cmn :¼ �pMjt
and umn :¼ 1 for all demand arcs ðm; nÞ ¼
ðnDjt ; nSj Þ.
cf. (2) After fixing the setup pattern of a produc-
tion line l, the last product j of the correspond-
ing line-schedule is already determined.
Therefore, ending costs cElj can easily be re-
spected.
cf. (3)–(5) Maximum lotsizes are modeled by in-
troducing upper bounds

umn :¼ alj � maxlj �
X

s2Slt ;i6¼j
zlijs ð13Þ

for each production arc ðm; nÞ ¼ ðnClt ; nDjt Þ. Si-
multaneously, penalty costs

sljj :¼ 1 8l; j ð14Þ

prohibit two consecutive lots of the same
product. Note that the same setting enforces a
new lot to be started at the beginning of each
macro-period. (Because in the GLSPPL a setup
carryover has anyway been modeled by setup
costs sljj ¼ 0 for all l; j.)
cf. (6) To ensure that product j is the starting
operation on line l, a fictitious product 0 has
to be introduced. This fictitious product defines

H. Meyr / European Journal of Operational Research 139 (2002) 277–292 285



the initial setup state of line l: yl00 :¼ 1 and
yli0 :¼ 0 for i ¼ 1; . . . ; J . With

sl0i :¼
0 if i ¼ j;
1 else;

�
and sli0 :¼ 1 for i ¼ 1; . . . ; J

ð15Þ

the desired setup is finally enforced.

4. Computational results

In [17], the two solution procedures TADR and
SADR to the single line problem GLSPST are
presented. Both of them apply dual reoptimization
and will serve as benchmark algorithms when
evaluating the multi-line procedures introduced in
Sections 3.2 and 3.3.

TADR employs TA to control the local search.
The threshold values Th of TADR are taken from
the decreasing sequence 0.15, 0.03, 0.025, 0.02,
0.015, 0.014, 0:013; . . . ; 0:002, 0.001, 0. The maxi-
mum number of candidate tests before changing
the threshold value is set to 1000. The threshold is
also lowered when 250 tests have not improved the
current objective value. If the current solution has
not changed within TaEnd :¼ 3000 steps, a run of
TADR is stopped.

SADR is based on SA. The temperature s of the
rth candidate test computes as

s :¼ aq�1 � ŝs for ðq� 1ÞM < r6 qM : ð16Þ

In this annealing schedule, the temperature is kept
constant for different plateaus q ¼ 1; . . . ;Q of the
search. Q ¼ 18 performed best in the parameter
tests underlying [17]. The length of plateau M is set
to 1000. Furthermore, the initial temperature
ŝs ¼ 1000 and the cooling rate a ¼ 0:8 are used.
In the following, four different solution proce-

dures for the GLSPPL are evaluated. TAPL and
TAPLS combine dual reoptimization with thresh-
old accepting. TAPL tries to imitate TADR as
close as possible. Therefore, the same control pa-
rameters of the local search are used. Early denial
of reoptimization is forbidden (cf. Section 3.2.3).
The maximum number of iterations per candidate is
given by MaxIt ¼ 1000, thus practically having no
effect.

TAPLS should shorten computation time when
compared to TAPL. As a consequence early denial
of reoptimization is allowed and TaEnd andMaxIt
are lowered to 500 and 75, respectively.
SAPL and SAPLS solve the GLSPPL by com-

bining dual reoptimization with simulated anneal-
ing. SAPL employs the parameter configuration
Q ¼ 40, M ¼ 1000, ŝs ¼ 50 and a ¼ 0:95. Early de-
nial of reoptimization is permitted, again, andMaxIt
is set to 1000. SAPLS shows a better running time
performance because Q and MaxIt are reduced
(Q ¼ 10,MaxIt ¼ 75).
All computational tests concerning these so-

lution procedures have been executed on a per-
sonal computer with a PentiumPro200 CPU. The
operating system Linux and the gcc compiler are
used in the experiments of Section 4.1 (to be
comparable with [17]), whereas Windows/NT and
Borland/C++ are preferred in the subsequent
sections.

4.1. Single line problems

In Section 3.2.3, it was already mentioned that
the multi-line procedures TAPL and SAPL cause
rather high computation times. Therefore, two
modifications were proposed, which ought to re-
duce running times. On the other hand, they were
expected to decrease solution quality. These
statements are going to be quantified now. In or-
der to get some basic insights, it will be sufficient to
concentrate on the threshold accepting heuristics.
Some single line problems of the consumer

goods industry presented in [17] serve as the data
basis. Considering only a single production line,
TADR and TAPL are directly comparable. Since
both employ the same threshold accepting control
parameters, the impacts of changing from an or-
dinary MCFP to a GNFP with losses and gains
can be illustrated.
The data set comprise 44 practical problems

with T ¼ 4 macro-periods and 2–16 products and
42 problem instances with T ¼ 8 macro-periods
and 5–18 products. Gross utilization (including
setup times) varies between 70% and 97%. Se-
quence independent setup times cover about 1–3%
of total capacity available. Setup costs, however,
are sequence dependent.

286 H. Meyr / European Journal of Operational Research 139 (2002) 277–292



Table 2 shows the results of the computational
experiments. The problems with T ¼ 4 and T ¼ 8
macro-periods, respectively, are pooled in four
problem classes with up to 5; 10; 15; . . . products.
The number of problem instances within a class is
denoted by #. For each problem class the average
computation time (CPU seconds) of a single run of
the respective solution procedure is presented. For
every problem instance 250 runs of TADR and 25
runs of TAPL/TAPLS have been executed.
Additionally, the average percentage deviation

of TAPL/TAPLS from TADR is shown. It is
measured by

dev :¼ zðTAPL=TAPLSÞ � zðTADRÞ
zðTADRÞ � 100 ð17Þ

with zð�Þ denoting the respective solution proce-
dure’s objective function value (averaged over all
250 or 25 runs of a problem instance). dev is fur-
ther aggregated over all problems of a problem
class.
As one would expect, there is no significant

difference in solution quality between TADR and
TAPL (0.3%). This is because the same local
search control parameters have been used.
TAPLS, however, shows a decrease in solution
quality of 2.2%. The modifications presented in
Section 3.2.3 indeed lead to worse results. Never-
theless, the overall impact seems not to be crucial.
On the other hand, this reduction of solution

quality comes along with a decrease in computa-
tion time. Running times of TAPLS are three

times less on an average than running times of
TAPL.
Compared to TADR, the computation times of

the multi-line procedures TAPL and TAPLS ap-
pear dramatically high. This gap increases the
longer the planning horizon is and the more
products are involved. When looking at TADR
and TAPL one can see the only reason for these
results: the MCFP that remains after fixing the
setup pattern is solved by far faster applying the
GLSPST solution procedure and its specialized
MCFP algorithm [2]. The GNFP algorithm of
Bertsekas and Tseng implemented in TAPL per-
forms comparably only for very small problem
instances.
Nevertheless, TAPLS solves these industrial

single line problems in high, but still acceptable
computation times. Whether this is also true for
the multi-line case will be investigated in the fol-
lowing sections.

4.2. Benefits of a computational line assignment

The practical problems of the last section
originally comprise four production lines. Two of
them are identical. Thus, the respective products
can be scheduled alternatively on both lines. The
assignment of demand to a single line has so far
been done manually by practitioners. In this
section, the manual assignment is skipped and the
multi-line algorithms TAPLS/SAPLS are used to
schedule both lines simultaneously. By comparing

Table 2

Average computation time CPU (seconds) and average percentage deviation dev of TAPL/TAPLS from TADR for # problem in-

stances of a problem class with T macro-periods and J products

T J # CPU dev

TADR TAPL TAPLS TAPL TAPLS

4 2–5 9 0.3 4.8 1.5 1.02 3.17

4 6–10 19 0.5 21.4 7.9 0.50 2.11

4 11–15 15 0.6 45.6 16.8 0.16 2.23

4 16 1 0.7 144.5 49.4 )0.50 0.47

8 5 2 0.6 37.9 16.7 1.68 3.20

8 6–10 10 0.9 193.2 63.6 0.50 2.50

8 11–15 26 1.2 445.1 159.0 )0.03 1.86

8 16–18 4 1.6 1017.6 287.0 )0.02 0.98

All problems 86 0.8 227.2 77.0 0.31 2.15

H. Meyr / European Journal of Operational Research 139 (2002) 277–292 287



the emerging results with the results of the last
section, the advantage of a ‘‘computational’’ line
assignment over the ‘‘manual’’ assignment can be
detected.
In the multi-line case, 12 problem instances

T01; . . . ; T12 with T ¼ 8 macro-periods, L ¼ 2
production lines and J ¼ 15–19 products are
considered. Each instance results from combining
the respective pair of single line problems (where
the manual line assignment had already taken
place). Since both lines are identical, production
costs are disregarded.
Twenty-five runs of TAPLS/SAPLS and 250

runs of TADR/SADR have been executed to test
each of the 12 multi-line and 24 single line
problems. Table 3 shows the percentage devia-
tion dev of TAPLS/SAPLS from TADR/SADR
for all problems T01; . . . ; T12, separately. The
average objective function value of the multi-line
problem is compared to the summed objective
function values of the corresponding pair of
single line problems as (analogously) defined by
expression (17).
The computational line assignment improves

the manual one by 3–4%. Since the accelerated
multi-line versions of threshold accepting and
simulated annealing are used, these results are

particularly notable. We have seen in the last sec-
tion that the solution quality of the multi-line
procedures can further be increased by tolerating
higher computation times.
TAPLS and SAPLS show approximately the

same solution quality. To demonstrate this, the
percentage deviation of TAPLS from SAPLS is
also presented in Table 3. Thus, the difference in
solution quality between threshold accepting
()4.2%) and simulated annealing ()2.7%) is due to
the higher quality of SADR when directly com-
pared to TADR (cf. [17]).
Additionally, the average computation times

(CPU seconds) of both multi-line heuristics are
depicted in Table 3. With at most 10 minutes,
running times of TAPLS appear rather high, but
are again on an acceptable level. Computation
time clearly increases with the number of products
J increasing. The problems T 02 and T06 are
somewhat off-beat because in these problem in-
stances one line is shut down during 4 of the 8
macro-periods.
Running times of SAPLS exceed running times

of TAPLS by more than 50% on an average. Since
both heuristics show comparable solution quality,
threshold accepting outperforms simulated an-
nealing in the two line case.

Table 3

Average percentage deviation dev of TAPLS from TADR (TAPLS
DR ), SAPLS from SADR (SAPLS

DR ) and TAPLS from SAPLS (TASAPLS);

average computation times CPU (seconds) of a single run of TAPLS and SAPLS for the problems T01; . . . ; T12

J # dev CPU

TAPLS
DR SAPLS

DR
TA
SAPLS TAPLS SAPLS

T01 15 1 )6.79 )5.45 )0.48 268 471

T02a 16 1 )0.36 1.71 0.08 (163) (225)

T03 16 1 )3.57 )0.62 )1.59 289 560

T04 17 1 1.43 3.50 )0.98 326 710

T05 17 1 )2.63 0.81 )0.53 369 589

T06a 18 1 )6.02 )8.32 3.58 (349) (376)

T07 18 1 )9.24 )6.20 )2.13 422 616

T08 19 1 )10.14 )9.31 0.59 465 751

T09 19 1 0.50 2.29 0.06 489 860

T10 19 1 )5.91 )4.49 )1.39 512 863

T11 19 1 )11.53 )10.60 0.47 548 868

T12 19 1 3.90 4.20 2.42 598 696

All problems 12 )4.20 )2.71 0.01 400 632

aOne production line is shut down during 4 of the 8 macro-periods.

288 H. Meyr / European Journal of Operational Research 139 (2002) 277–292



4.3. The CHES problems

It is desirable to compare the GLSPPL heuristics
to other solution procedures tackling the same or at
least a related problem. To make the latter one
possible, the GLSPPL heuristics have been ex-
panded in Section 3.3 so that the CHES problems
can be solved, too. For each of the CHES instances
the ‘‘good’’ solution of Baker and Muckstadt [3] is
already known. The same problems have also
(heuristically) been solved by Kang et al. [14].
These authors additionally provide lower bounds.
The five CHES instances have already been

described in Section 3.3. For each instance the
number of macro-periods T, products J and pro-
duction lines L is shown in Table 4. To test the
local search procedures, 400 runs of TAPL and
SAPL have been executed per problem instance. If
a changeover from product i to product j is for-
bidden on a production line l, penalty costs
slij ¼ 5000 substitute for slij ¼ 1.
Within Sections 4.1 and 4.2, the number of

micro-periods per macro-period jSltj did not have
to be restricted. In [14] however, the number of
lots per macro-period is bounded by the number
of split-sequences Lt times the maximum number

of products per split-sequence maxBr. Therefore,
in all TAPL and SAPL experiments of this section
jSltj was also bounded by J.
For each problem instance, the lower bound

and the best solution found by Baker and
Muckstadt ([3], Ches), Kang et al. ([14], Kang),
TAPL and SAPL are shown in Table 4. The best
TAPL and SAPL solutions result from the above
mentioned 400 runs of the respective local search
procedure, the best Kang solution has been de-
termined by a systematic variation of Lt and
maxBr.
Note that negative costs are due to market

sales. The benchmark solutions of Baker and
Muckstadt can be improved by all other solution
procedures. Among these, SAPL shows the best
results. It is able to achieve or improve the Kang
solutions in all five problem instances. Addition-
ally, the percentage deviation dev of these best
solutions from the lower bound is depicted in
Table 5. Except for the Ches solutions, this gap is
less than 5%, throughout.
The computation times (CPU seconds) of the

best TAPL and SAPL solutions are also shown in
Table 5. Note that the computational study of
Kang et al. was done on a Pentium 75 personal

Table 5

Percentage deviation of the best solution of Baker and Muckstadt (Ches), Kang et al. (Kang), TAPL and SAPL from the lower bound

and the respective computation time (seconds) for the problems CHES1; . . . ;CHES5

Percentage deviation from lower bound Computation time (seconds)

Ches Kang TAPL SAPL TAPL SAPL

CHES1 6.78 0.00 0.00 0.00 26 75

CHES2 1.60 1.23 1.36 1.23 19 76

CHES3 3.46 0.33 0.30 0.19 28 30

CHES4 2.98 0.01 0.01 0.01 < 1 2

CHES5 7.87 4.19 4.25 4.17 23 74

Table 4

Lower bound and best solution found by Baker and Muckstadt (Ches), Kang et al. (Kang), TAPL and SAPL

T=J=L Lower bound Best objective function value

Ches Kang TAPL SAPL

CHES1 1/10/10 121.84 130.1 121.84 121.84 121.84

CHES2 1/21/8 )2860.7 )2814.8 )2825.54 )2821.75 )2825.54
CHES3 3/11/1 )1289485.2 )1244855.3 )1285204.26 )1285603.95 )1287037.80
CHES4 1/11/2 )646898.7 )627610.5 )646857.85 )646849.19 )646857.85
CHES5 3/12/2 )7413.0 )6829.8 )7102.32 )7098.11 )7104.11

H. Meyr / European Journal of Operational Research 139 (2002) 277–292 289



computer using the operating system Windows95
and the Microsoft C/C++ compiler. Therefore,
running times are not comparable.
When comparing TAPL to SAPL, there is a

price to pay for the better solution quality of
SAPL: the computation times of the simulated
annealing procedure clearly increase.
Beyond the CHES problems, Kang et al. [14]

investigate nine further artificial problems Da;
. . . ;Di with J ¼ 6 products and T ¼ 9 macro-pe-
riods. These problems are related to CHES5 and
differ in the number of production lines L (a single
line and two identical lines, respectively), the uti-
lization U, the minimum lotsize mlj and the max-
imum lotsize maxlj (cf. Table 6).
In Table 7, again, the objective function values of

the best solutions and the respective computation
times (of these single runs) are depicted. Since lower
bounds are not available this time, the percentage
deviation dev of the best TAPL/SAPL solution from
the best solution of Kang et al. is shown.

There is a significant difference in solution
quality between the TAPL/SAPL solutions and the
solutions of Kang et al. to be noticed now. This is
probably due to the fact that – as opposite to the
CHES problems – solution quality was not a prime
concern of Kang et al. when testing these problems
(private correspondence). They mainly wanted to
obtain insights on the problem and their algorithm
for varying test scenarios.
Regarding the problem characteristics, a con-

firmation of the findings of Kang et al. can be
made: Kang et al. expected better solutions to be
obtained on two production lines than on one line.
However, they were only able to prove this state-
ment for a machine utilization of 95% and 70%,
respectively, but not for a utilization of 99%.
When looking at TAPL and SAPL for the prob-
lems Db and Dh, one can see that Kang et al.
found a good solution for Db, but a rather bad
solution for Dh. So their guess is generally true –
no matter what utilization is given.

Table 6

Number of production lines L, utilization U, minimal lotsizes mlj and maximal lotsizes maxlj for the problems Da; . . . ;Di

Da Db Dc Dd De Df Dg Dh Di

L 1 1 1 1 1 1 2 2 2

U 95 99 70 95 99 95 95 99 70

mlj 20 20 20 20 20 0 20 20 20

maxlj 200 200 200 100 100 1000 200 200 200

Table 7

Best objective function value and the respective computation time (seconds) of Kang et al. (Kang), TAPL and SAPL; percentage

deviation dev of best TAPL/SAPL solution from the best solution of Kang et al. for the problems Da; . . . ;Di

Best objective function value CPU (seconds) dev

Kang TAPL SAPL TAPL SAPL TAPL SAPL

Da 856.81 846.97 844.62 25 128 )1.2 )1.4
Db 865.29 859.97 869.30 39 158 )0.6 0.5

Dc 816.61 766.58 760.08 12 73 )6.1 )6.9

Dd 1263.01 1182.11 1174.01 31 138 )6.4 )7.1
De 1360.87 1248.26 1260.33 39 163 )8.3 )7.4
Df 832.95 812.66 812.66 26 188 )2.4 )2.4

Dg 776.80 726.00 710.43 60 289 )6.5 )8.5
Dh 940.49 841.05 859.00 64 295 )10.6 )8.7
Di 594.11 592.90 582.88 42 224 )0.2 )1.9

290 H. Meyr / European Journal of Operational Research 139 (2002) 277–292



5. Summary and conclusions

The GLSPPL, a model for simultaneous
lotsizing and scheduling of several products on
non-identical parallel production lines, has been
introduced. In this model deterministic dynamic
demand is to be met without back-logging with
the objective of minimizing production costs, in-
ventory holding costs and sequence dependent
setup costs. Sequence dependent setup times may
further reduce the limited capacity of each pro-
duction line.
The problem is solved by combining the local

search procedures threshold accepting and simu-
lated annealing with dual reoptimization. A large
number of setup sequences is generated and tested
by means of local search. For each candidate se-
quence being determined and fixed this way, a
generalized network flow problem has to be tack-
led by dual reoptimization in order to evaluate the
respective production and inventory holding costs.
For that purpose, the relax algorithm of Bertsekas
and Tseng [4] has been implemented.
If only a single production line is given, an or-

dinary minimum cost network flow problem
(MCFP) remains after fixing the setup sequence
[17]. As Section 4.1 has shown, this MCFP can be
solved by far faster when using specialized (dual)
network flow algorithms. Since the running times
of the standard GLSPPL solution procedures are
quite high, some modifications for accelerating the
computation time have been proposed. Unfortu-
nately, these modifications also lead to a (minor)
decrease of solution quality.
Nevertheless, the GLSPPL solution procedures

have proven to solve practical problems of con-
sumer goods industry successfully. The computa-
tional assignment of demand to production lines
improves the manual assignment (suggested by
practitioners) noteworthy.
The GLSPPL solution procedures are very

flexible. They have easily been adapted to deal
with the CHES problems, a related type of lotsiz-
ing and scheduling problems with zero setup times.
Also their solution quality is competitive to other
(specialized) solution procedures. This has been
shown when comparing the GLSPPL solutions
with the solutions suggested by Baker and

Muckstadt [3] and Kang et al. [14], respectively.
Note that the algorithm of Kang et al. is especially
designed to solve the CHES problems.
Altogether, the GLSPPL procedures are prac-

tically applicable and profitable, but their com-
putational behaviour is not really satisfying.
Therefore, reducing running times should be a
major concern of future research.

Acknowledgements

The author is grateful to Prof. Dr. Bernhard
Fleischmann, Prof. Sungmin Kang, Prof. David L.
Woodruff and the two unknown referees for their
helpful comments.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows,

Prentice-Hall, Englewood Cliffs, NJ, 1993.

[2] A.I. Ali, R. Padman, H. Thiagarajan, Dual algorithms for

pure network problems, Operations Research 37 (1) (1989)

159–171.

[3] T. Baker, J.A. Muckstadt, Jr., The CHES problems,

Technical Paper, Chesapeake Decision Sciences, Inc., 200

South Street, New Providence, NJ, 1989.

[4] D.P. Bertsekas, P. Tseng, Relaxation methods for mini-

mum cost ordinary and generalized network flow prob-

lems, Operations Research 36 (1) (1988) 93–114.

[5] R. De Matta, M. Guignard, Studying the effects of

production loss due to setup in dynamic production

scheduling, European Journal of Operational Research

72 (1994) 62–73.

[6] R. De Matta, M. Guignard, The performance of rolling

production schedules in a process industry, IIE Transac-

tions 27 (1995) 564–573.

[7] A. Drexl, K. Haase, Proportional lotsizing and scheduling,

International Journal of Production Economics 40 (1995)

73–87.

[8] A. Drexl, A. Kimms, Lot sizing and scheduling – survey

and extensions, European Journal of Operational Research

99 (1997) 221–235.

[9] G. Dueck, T. Scheuer, Threshold accepting: A general

purpose optimization algorithm appearing superior to

simulated annealing, Journal of Computational Physics

90 (1990) 161–175.

[10] B. Fleischmann, The discrete lot-sizing and scheduling

problem with sequence-dependent setup costs, European

Journal of Operational Research 75 (1994) 395–404.

[11] B. Fleischmann, H. Meyr, The general lotsizing and

scheduling problem, OR Spektrum 19 (1) (1997) 11–21.

H. Meyr / European Journal of Operational Research 139 (2002) 277–292 291



[12] C. Jordan, in: Batching and Scheduling, Lecture Notes in

Economics and Mathematical Systems, vol. 437, Springer,

Berlin, 1996.

[13] C. Jordan, A. Drexl, Discrete lotsizing and scheduling by

batch sequencing, Management Science 44 (5) (1998)

698–713.

[14] S. Kang, K. Malik, L. Thomas, Lotsizing and scheduling

on parallel machines with sequence-dependent setup costs,

Management Science 45 (2) (1999) 273–289.

[15] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by

simulated annealing, Science 220 (1983) 671–680.

[16] R. Kuik, M. Salomon, L.N. Van Wassenhove, Batching

decisions: Structure and models, European Journal of

Operational Research 75 (1994) 243–263.

[17] H. Meyr, Simultaneous lotsizing and scheduling by com-

bining local search with dual reoptimization, European

Journal of Operational Research 120 (2) (2000) 311–326.

[18] K.G. Murty, Network Programming, Prentice-Hall,

Englewood Cliffs, NJ, 1992.

[19] M. Salomon, L. Solomon, L.N. Van Wassenhove, J.

Dumas, S. Dauz�eere-P�eer�ees, Solving the discrete lotsizing

and scheduling problem with sequence dependent set-up

costs and set-up times using the Traveling Salesman

Problem with time windows, European Journal of Oper-

ational Research 100 (1997) 494–513.

[20] L.A. Wolsey, MIP modelling of changeovers in production

planning and scheduling problems, European Journal of

Operational Research 99 (1997) 154–165.

292 H. Meyr / European Journal of Operational Research 139 (2002) 277–292


