
A new heuristic for the multi-mode resource
investment problem
C-C Hsu1* and DS Kim2

1General Motors Engineering, Pontiac, MI, USA; and 2Oregon State University, Corvallis, OR, USA

This paper considers the problem of minimizing resource investment required to execute the tasks in a project network
by a given project due date. A project consists of non-pre-emptive tasks executed in a known and required precedence
order. Each task is completed in one of its feasible modes, which may differ not only in task duration but also in
consumption of renewable resources. A priority rule heuristic with polynomial computational complexity is presented
for this computationally intractable problem. This heuristic simultaneously considers due date constraints and resource
usage to select and schedule tasks with one decision rule. This differs from prior multi-mode priority rule scheduling
heuristics that apply two consecutive decision rules to schedule tasks. Extensive computational testing indicates
promising results.
Journal of the Operational Research Society (2005) 56, 406–413. doi:10.1057/palgrave.jors.2601827
Published online 29 September 2004

Keywords: scheduling/sequencing; project management; combinatorics

Introduction

There are many examples of real projects where the project

due dates are agreed upon or are the result of other higher-

level decisions. With such due dates established, the objective

is to schedule tasks in the project to minimize the project

completion costs. An example of such a project, and one that

motivated this research, is vehicle engineering and design. In

this application, all the vehicle components must be

electronically drafted and the order in which such drawings

must be completed represents a project precedence network.

Such a huge project is organized at different levels, and

the engineering managers who schedule design tasks for the

lower level vehicle subsystems (eg front-bumper) take the

subsystem due date as a fixed input from the higher level

vehicle system (eg exterior system).

The problem of scheduling tasks to meet due dates at

minimal cost is called the resource investment problem

(RIP), and is one that has received relatively little attention

compared to its related problem, the resource constrained

project scheduling problem (RCPSP). The RIP, like the

RCPSP, is a computationally intractable problem. In this

paper, we consider its multi-mode extension, the multi-mode

resource investment problem (MMRIP) and present an

effective and computationally efficient heuristic.

The remainder of this paper is organized as follows. We

first define the MMRIP and present a review of the literature.

The logic and details of the new heuristic are presented, and

followed by computational results and conclusions.

Problem definition

The RIP was first introduced when Mohring1 classified the

family of project-scheduling problems into two categories:

(a) The problem of scarce resources: given a constant limit Kr

for the available amount of resource r, what is the

shortest possible project duration?

(b) The problem of scarce time: given a limit T for the project

duration, what is the minimum total resource cost,

assuming unlimited resources and cost f(Kr) for Kr units

of resource r?

Category (A) problems are commonly referred to as

RCPSPs,2–5 and category (B) problems were first called

resource availability cost problems6 and later RIPs.7 This

paper uses this later naming convention.

We consider a generalization of RIP, referred to as the

MMRIP, in which at least one of the tasks may be

undertaken in any of its several modes. For the MMRIP,

a project has J non-pre-emptive tasks and R types of

renewable resources. A task j takes duration djm to complete,

if it is executed in mode m. Mode m of task j requires kjmr

units of resource r in each period of its execution. Without

loss of generality, the project is assumed to have a source

task (task 1) and an end task (task J), which represent

the beginning and the end of the project, respectively. The

scheduling problem is to determine the starting time and the

*Correspondence: C-C Hsu, Operations Research Department, General
Motors Engineering, 585 South Boulevard, MC: 483-585-372, Pontiac,
MI 48341, USA.
E-mail: chihcheng.hsu@gm.com

Journal of the Operational Research Society (2005) 56, 406–413 r 2005 Operational Research Society Ltd. All rights reserved. 0160-5682/05 $30.00

www.palgrave-journals.com/jors

mode for each task j, which in turn determines the demand

level of each resource r (Kr), so that the project will be

completed by due date T with minimal total resource

investment. The mathematical model for this problem is:

Minimize
X

r

crKr

Subject to

X
m

X
t

xjmt ¼ 1 8j ð1Þ

X
m

X
t

ximtðt þ dimÞp
X
m

X
t

xjmtt 8j; 8i 2 Pj ð2Þ

X
j

X
m

kjmr

Xt�djm þ 1

t¼t

xjmtpKr 8t; 8r ð3Þ

X
m

X
t

xJmttpT ð4Þ

xjmt 2 f0; 1g 8j; 8m; 8t ð5Þ

The indices in this model are:

j task index (j¼ 1, 2, y, J)

m mode index of each task (m¼ 1, 2, y, Mj)

r resource index (r¼ 1, 2, y, R)

t time index (t¼ 1, 2, y, T)

The parameters are:

J total number of tasks in the project

R total number of resources in the project

T project due date

cr cost for one unit of resource r for the entire project

djm duration of task j if it is executed in mode m

kjmr units of resource r required by task j if it is executed

in mode m

Mj number of modes for task j

Pj set of immediate predecessors for task j

and the variables are:

xjmt 1: if task j starts at time t and executes with mode m;

0: otherwise

Kr units of resource r required

In this model, the objective function is to minimize

the total resource investment. Constraints (1) and (5) ensure

that each job starts at only one time period, with only

one mode. The precedence relationships among tasks

are defined in constraint (2). Constraint (3) prevents

resource overuse and constraint (4) enforces the project

due date.

Literature review

Unlike the RCPSP, little research has focused on the

RIP, even though many real RIP applications exist. The

first RIP research was conducted by Mohring,1 and it

was not until Demeulemeester6 that additional RIP research

appeared in the literature. Both Mohring1 and Demeule-

meester6 developed optimal solution procedures for the

RIP.

Conceptually, Mohring1 and Demeulemeester6 utilize

what can be called a two-stage algorithm. In the first stage,

a capacity level is assigned to each resource. With this

predetermined resource capacity level, the RIP is trans-

formed into a corresponding RCPSP with fixed project

duration (RCPSP with due date constraint). The second

stage is used to verify whether this transformed problem has

a feasible solution.

Mohring’s algorithm starts with a high resource capacity

level in the first stage. If a feasible solution is confirmed in

the second stage, the capacity level is then decreased. The

algorithm iterates until feasibility can no longer be

confirmed. In that case, the last capacity level becomes the

optimal solution. In contrast, Demeulemeester’s algorithm

starts with a low capacity level for each resource in the first

stage. Then capacity level increases until a feasible solution is

confirmed.

The only RIP heuristic discovered in the literature was

proposed by Neumann and Zimmermann.7 A modified

serial scheme priority rule heuristic was utilized. Unlike the

serial schedule generation method for the RCPSP, which

schedules selected tasks at the earliest resource-feasible time,

tasks are scheduled to minimize resource investment without

violating the due date and precedence orders. Their

computational experiments indicated promising results.

Their heuristic is applicable to the single-mode RIP. To

the best of our knowledge, no heuristic has been proposed

for the MMRIP.

A multi-mode resource investment problem heuristic

In this section, we introduce a new MMRIP priority rule

dispatching heuristic. Priority rule dispatching has been a

common heuristic approach to project scheduling problems

(see Kurtulus and Davis,8 Boctor,9 Lawrence and Morton,10

Kolisch,4,11 Neumann and Zimmermann7). The new heur-

istic we describe is a dispatching method, which can be

applied within a serial schedule generation scheme (for a

detailed review of the serial schedule generation scheme and

the parallel schedule generation scheme, refer to Kelley12

and Kolisch4).

A serial schedule generation scheme iteratively builds a

complete schedule task by task. A priority rule is used to

select and schedule the next task (among the unscheduled

tasks). The scheme stops when all tasks have been scheduled.

C-C Hsu and DS Kim—Multi-mode resource investment problem 407

From single mode to multi-mode: one possible
straightforward extension

For the MMRIP, an additional decision not found in the

RIP is determining a mode for each task. An intuitive

approach is to again apply a priority rule to select a mode

for each task. This approach has been used for the multi-

mode RCPSP or MMRCPSP.13,14

An example of using this approach for the MMRIP is to

select a task j* using the minimum slack rule at each iteration

(choose the task that has the minimum slack value, this will be

explained later), and then use the minimum investment rule to

determine the mode and starting time for task j* (choose the

mode m* and starting time t* for task j* that requires the

minimum extra investment). However, this two-priority-rule

approach overlooks the potential inter-dependencies between

tasks, their starting times, and modes. The development of a

new approach is motivated by the following question: ‘Can we

use a single priority rule to select a good combination of task

j*, mode m*, and starting time t*?’

A new approach for the multi-mode case

To demonstrate this idea, we will integrate the two priority

rules discussed above into a single priority rule and then

introduce a new dispatching method, which will simulta-

neously select a task and determine its mode and starting time.

Selecting a task to schedule using a priority rule has two

components. The first component evaluates each candidate

task with a priority function. The second component is a

decision rule that selects a task based on each task’s priority

function value. For example, in the minimum slack rule, the

priority function calculates the slack time of each task and

the decision rule is to choose the task that has the minimum

value. Thus, integrating two priority rules will require

integrating their underlying priority functions, as well as

their corresponding decision rules.

We first introduce two new priority functions that are

related to those discussed above (minimum slack rule and

minimum investment rule) called the transformed slack

priority function and the transformed investment priority

function. We then describe the combined priority function,

associated decision rule, and new heuristic.

Transformed slack priority function

Before discussing the development of the transformed slack

priority function, some terminology will be introduced. The

slack time of task j is defined as the difference between its

latest starting time and earliest starting time (LSTj – ESTj).

A task’s LSTj, ESTj, and latest finish time (LFTj) are

calculated by the critical path method (CPM). For multi-

mode project scheduling problems, the shortest duration

mode of each task is used to derive these values.

Additionally, define the threshold finish time (TFTj) as the

latest finish time calculated from CPM by using the longest

duration mode of each task (see Figure 1).

The transformed slack priority function for task j in mode

m starting at time t is defined as

v1ðj;m; tÞ

¼

MaxðFTðj; m; tÞ � TFTj; 0Þ
LFTj�TFTj

8j; m; t3ESTjpt;

FTðj; m; tÞpLFTj

1 otherwise

2
6664

where FT(j, m, t)¼ tþ djm.

FT(j, m, t) is the finish time of task j, if it starts at period t

and is executed in mode m. An explanation of the

transformed slack priority function is presented next.

Given a partial schedule PS, for each unscheduled task j that

is precedence feasible, the difference between its latest finish

time and earliest starting time (LFTj – ESTj) defines the size of

the time-window, where task j must be scheduled into (started

and finished) to meet the project due date. If the finish time

goes beyond LFTj (ie LFTj o FT (j, m, t)), the project will not

complete by the due date, even if all of task j’s successors are

executed in their shortest duration modes and resource

constraints impose no delays. If this is the case, the transformed

slack priority function returns a value of infinity. On the other

hand, if task j is completed before the latest finish time, the

function will return a finite positive value. To determine this

function value, we recognize that LFTj and TFTj have different

scheduling implications. If task j is completed before the

threshold finish time (ie FT(j, m, t)pTFTj), then its successors

have an opportunity to use any of their available modes and

still meet the project due date. Any starting time that results

with FT(j, m, t)pTFTj is considered equivalent, and the

function returns a priority value of zero. If task j is completed

after the threshold finish time (FT(j, m, t)XTFTj), then its

successors are restricted in their available modes to meet the

project due date. In this case, the function returns a positive

value greater than zero (see Figure 2).

The transformed slack priority function evaluates the

impact of a task’s finish time on unscheduled tasks. A higher

value reflects a ‘tighter’ subsequent scheduling situation.

By dividing the numerator by LFTj�TFTj, the function is

ESTj FT(j,m,t)

djm

Time Window j

Time

task j,mode m

t LFTj

Figure 1 Slack priority function variables.

408 Journal of the Operational Research Society Vol. 56, No. 4

normalized and generates a dimensionless value between

zero and one. The function increases linearly as the finish

time increases beyond the threshold finish time, and reaches

one when the task is completed at the latest finish time. A

lower value reflects a better scheduling alternative.

Transformed investment priority function

Using similar reasoning, we next describe the transformed

investment priority function. Given a partial schedule PS,

define Rrt as the units of resource r that have been consumed

at time period t. Then, define prt as the corresponding cost of

Rrt units of resource r at time period t. The investment

requirement for resource r (Kr) and the total required

investment (L) can be expressed as

Kr ¼ Max
t

prt

L ¼
X

r

Kr

With partial schedule PS, define a(j, m, t) as the extra

investment required, if an unscheduled task j starts at time t

with mode m.

að j; m; tÞ ¼
X

r

MaxðKr; cr�ðkjmr þ Max
tþ djm

t¼t
RrtÞÞ

The possible extra investment required when scheduling a

new task is illustrated in Figure 3. Assuming that a limit on

the total resource investment (IUB) exists, the transformed

investment priority function is defined as

v2ðj;m; tÞ

¼
að j; m; tÞ
IUB � L 8j; m; t 3L þ að j; m; tÞpIUB

1 otherwise

"

This function evaluates additional resource investment

required when scheduling a task. The function also increases

linearly as additional resource investment is required. This

function is normalized between zero and one, and is

dimensionless. For an unscheduled task, if every mode and

starting time requires extra investment beyond the invest-

ment limit, no feasible schedule can be generated from the

current partial schedule.

Decision rule: determining the best (task, mode, time)
combination

v1 and v2 are combined into a single priority function, which

can be used by a decision rule to evaluate all possible task,

mode, and time alternatives. There are many ways to

combine v1 and v2 functions. A simple method is to weight-

sum v1 and v2:

vð j; m; tÞ ¼ o�v1ð j; m; tÞ þ ð1� oÞ�v2ð j; m; tÞ ð6Þ

The decision procedure for selecting the best combination

of j, m, and t is:

1. For each unscheduled precedence-feasible task j, select its

mode and starting time that give the lowest v. This mode

and starting time reflect the best scheduling option, if that

task is scheduled.

2. For these tasks with mode and starting time determined,

select the task that faces the ‘worst’ scheduling situation.

This is the task j that has the highest v. Among different

tasks, it makes intuitive sense to schedule the task that has

the most constraints, before its situation becomes worse.

Mathematically, the best task, mode, and time combina-

tion (j*, m*, t*) is determined by

ð j; m; tÞ ¼ arg Max
j

ðargMin
m2Mj ;t

vð j; m; tÞÞ ð7Þ

The algorithm

The above priority function (Equation (6)) and the decision

rule (Equation (7)) will be applied within a serial schedule

v1(j, m, t)

1

0

ESTj TFTj LFTj

FT(j,m,t)

Figure 2 Relationship between FT and its v1 score.

Time
t

task j,mode m

r rt

Total Required
Investment

�(j,m,t)

 π

Λ

Σ

Figure 3 Investment priority function variables.

C-C Hsu and DS Kim—Multi-mode resource investment problem 409

generation scheme. During each iteration a new resource

investment limit is determined, and the serial schedule

generation scheme is applied. Note that there may be no

feasible solution if a tight investment limit is used.

The algorithm starts with a tight (small) resource

investment limit and iterates, increasing the investment limit

(IUB), until a feasible schedule is obtained. This initial

investment limit can be a lower bound or any small number.

When the algorithm stops, the last complete (feasible)

schedule is the solution.

There are J stages in each iteration, and one task is selected

and added to the partial schedule at each stage. Three disjoint

sets are associated with each stage: tasks that are in the partial

schedule are in the complete set. The unscheduled precedence

feasible tasks, which are the unscheduled tasks with all their

predecessors in the complete set, are in the decision set. The

remaining tasks are in the remaining set.

At each stage, among the tasks in the decision set, apply

the new priority function and rule to select the best

combination of task, mode, and starting time. After this

task is scheduled, it is then moved from the decision set to

the complete set. This will in turn cause some of the tasks to

transfer from the remaining set to the decision set, if they

become precedence feasible.

MMRIP Algorithm

Define:

TS the set of all tasks

CSeti the complete set at stage i

DSeti the decision set at stage i

RSeti the remaining set at stage i

PSi a partial schedule at stage i

Step 0: (Initialization)

Initialize IUB with a small investment limit

Step 1: (Iteration initialization)

i ¼ 1
RSet1 ¼ TS
CSet1 ¼ DSet1 ¼ PS1 ¼ +
Rrt ¼ 0 8r; t

Step 2: (Serial schedule generation scheme)

2.1. Move the precedence feasible tasks from RSeti to

DSeti, then

RSeti ¼ TS � CSeti � DSeti

2.2. Let

ð j; m; tÞ ¼ arg Max
j2DSeti

ðarg Min
m2Mj ;t

vð j; m; tÞÞ

(If there is a tie during Min or Max selection, break

the tie with v2(j, m, t) value)

2.3. If infeasibility is encountered, IUB¼ IUBþ 1, goto

Step 1

2.4. Schedule task j* with mode m* and starting time t*

and update Rrt

2.5.

CSetiþ 1 ¼ PSiþ 1 ¼ CSeti [f jg

2.6. i¼ iþ 1

2.7. If |PSi|oJ, repeat Step 2

Step 3: (Final result)

The last ðonlyÞPSJ þ 1 is the final schedule:

Experimental results

To test the effectiveness of the MMRIP algorithm, which

we refer to as the OneRule heuristic, problems from the

Kolisch problem set are modified to create a test problem

set. The issue of what to compare the results against still

remains. Many problems in the problem set are too large

to solve optimally. Also, there are no other MMRIP

heuristics in the literature. However, there are priority

rule-based heuristics for the MRCPSP that first apply one

rule for task selection, and a second rule for mode selection

and starting time. We compare our algorithm against this

type of priority rule heuristic, which will be referred to as

TwoRule.

Design of the comparison heuristic

TwoRule also uses the serial schedule generation scheme to

iteratively build a complete schedule. In each iteration a rule

is applied to select a task and then another rule is used to

determine the mode and starting time to schedule the

selected task. The iteration stops when a complete schedule

is obtained. The rules used for the experiments are shown in

Table 1. For more detailed definition of these rules, refer to

Kolisch4 and Neumann and Zimmermann.7

These rules generate 15 possible variations for the

TwoRule heuristic, as listed in Table 2. We will use the

weight factor (w) of 0.5 for the OneRule heuristic as the start

of the comparison. Our tests investigate the computational

efficiency and solution quality of OneRule compared to

TwoRule-I through TwoRule-XV.

The problem sets

We employed the standard problem sets C15, C21, J10, J12,

J14, J16, J18, J20, and J30 from the Kolisch problem sets for

the RCPSP (http://halfrunt.bwl.uni-kiel.de/bwlinstitute/

Prod/psplib/data.htm). The sets contain 4950 different

410 Journal of the Operational Research Society Vol. 56, No. 4

scheduling problem instances with 12–30 tasks, and four

resource groups. The non-renewable and doubly constrained

resources in each problem are treated as renewable

resources.

When using these RCPSP problem instances for the RIP

experiments, three different due dates are explored for each

problem. These due dates include a project’s shortest

duration, one-and-half times the shortest duration, and

two times the shortest duration. This gives a total of 14850

problem instances, which are solved using the MMRIP

heuristics.

Experimental results

The experimental results are presented as the average percent

of additional investment generated by the TwoRule heuristic

compared to the results obtained using the OneRule

heuristic. The results are summarized in Table 3.

On average, OneRule out-performs all of the TwoRule

heuristics, with the TwoRule heuristics generating solutions

with 25–50% more investment required. Among all

the TwoRule heuristics, TwoRule-I (minimum slack rule

and the minimum extra investment rule) produces the

best results. The TwoRule heuristics that use the minimum

resource demand rule produce the worst performance. This

does not come as a surprise, as the minimum resource

demand rule, being a static rule, does not use the

information from the partial schedule. (For a detailed

definition of static rules and dynamic rules, refer to

Kolisch.4)

Table 4 shows the percentage of problem instances, where

OneRule out-performs all of the TwoRule heuristics (out of

14 850 problems).

The experimental results can be categorized based on the

tightness of the project due date used. These results are

shown in Tables 5–7. For each level of due date tightness,

the average performance of OneRule is better than all the

TwoRule combinations. However, OneRule performs rela-

tively better as the due date becomes longer and more task

starting time options are available.

Additional experimental results

The effectiveness of the OneRule heuristic when compared to

the TwoRule heuristics is clearly indicated by the experi-
Table 1 Priority rules used for the TwoRule heuristic

Priority rule for task selection Priority rule for mode and
starting time selection

Minimum slack rule Minimum extra investment
rule

Minimum latest finish time
rule

Minimum local investment
rule

Minimum latest starting time
rule

Minimum resource demand
rule

Maximum number successor
rule
Maximum rank positional
weight rule

Table 2 The versions of Two Rule heuristic

Task selection Mode and starting time selection

TwoRule–I Minimum slack rule Minimum extra investment rule
TwoRule–II Minimum slack rule Minimum local investment rule
TwoRule–III Minimum slack rule Minimum resource demand rule
TwoRule–IV Minimum latest finish time rule Minimum extra investment rule
TwoRule–V Minimum latest finish time rule Minimum local investment rule
TwoRule–VI Minimum latest finish time rule Minimum resource demand rule
TwoRule–VII Minimum latest starting time rule Minimum extra investment rule
TwoRule–VIII Minimum latest starting time rule Minimum local investment rule
TwoRule–IX Minimum latest starting time rule Minimum resource demand rule
TwoRule–X Maximum number successor rule Minimum extra investment rule
TwoRule–XI Maximum number successor rule Minimum local investment rule
TwoRule–XII Maximum number successor rule Minimum resource demand rule
TwoRule–XIII Maximum rank positional weight rule Minimum extra investment rule
TwoRule–XIV Maximum rank positional weight rule Minimum local investment rule
TwoRule–XV Maximum rank positional weight rule Minimum resource demand rule

Table 3 Average percentage increase in total investment
generated by the TwoRule heuristics (I–XV) when

compared to the OneRule heuristic solutions

I II III IV V
25.56% 29.41% 50.07% 35.93% 40.82%

VI VII VIII IX X
50.07% 33.00% 36.66% 50.07% 35.49%

XI XII XIII XIV XV
39.51% 50.07% 33.36% 37.68% 50.07%

C-C Hsu and DS Kim—Multi-mode resource investment problem 411

mental results presented thus far. However, to possibly

further improve the OneRule heuristic and explore the effect

of the weight factor (w), some additional experimentation

was performed. For this purpose, we ran the OneRule

heuristic with several weight settings using the same 14850

problem instances. We also investigated the impact of

multiplying the v1 and v2 values to obtain v (instead of

using the weight-sum of v1 and v2). That is, we used the

following in place of Equation (6):

vð j; m; tÞ ¼ v1ð j; m; tÞ�v2ð j; m; tÞ ð8Þ

In all, 12 different priority functions (one using Equation

(8) and the others differing by the weighting value w) for the

OneRule heuristic were tested and are listed in Table 8.

OneRule-VII (w factor of 0.5) was used as the standard for

comparison. The results are summarized in Table 9 where

the results are the average percent of additional investment

generated by different versions of the OneRule heuristic,

when compared to OneRule-VII (the comparison of

OneRule-VII to itself is not included).

On average, there is little performance difference among

OneRule-IV through VIII, which represent the weighting

factors of 0.2–0.6. This means that the heuristic performs

well when a middle value of the weighting factor is used, and

that the heuristic is robust with respect to this factor.

OneRule-II, which considers only resource utilization,

produced the worst results. OneRule-I, which multiplies v1

and v2 to obtain v, also did not perform well. An explanation

Table 4 The percentage of problems where OneRule
out-performs TwoRule

I II III IV V
88% 91% 99% 93% 95%

VI VII VIII IX X
99% 91% 94% 99% 94%

XI XII XIII XIV XV
96% 99% 94% 95% 99%

Table 5 Average percentage increase in total investment
generated by the TwoRule heuristics (I–XV) when compared to
the OneRule heuristic solutions, and using a projects’ shortest

duration as the due date

I II III IV V
6.66% 8.51% 29.79% 12.61% 15.34%

VI VII VIII IX X
29.79% 10.46% 12.75% 29.79% 14.67%

XI XII XIII XIV XV
16.33% 29.79% 13.33% 15.26% 29.79%

Table 6 Average percentage increase in total investment
generated by the TwoRule heuristics (I–XV) when compared to
the OneRule heuristic solutions, and using one-and-half times

the projects’ shortest duration as the due date

I II III IV V
32.55% 36.40% 57.41% 44.01% 49.14%

VI VII VIII IX X
57.41% 40.63% 44.14% 57.41% 43.20%

XI XII XIII XIV XV
47.21% 57.41% 40.49% 45.09% 57.41%

Table 7 Average percentage increase in total investment
generated by the TwoRule heuristics (I–XV) when compared to

the OneRule heuristic solutions, and using two times the
projects’ shortest duration as the due date

I II III IV V
37.48% 43.34% 63.02% 51.18% 58.00%

VI VII VIII IX X
63.02% 47.90% 53.10% 63.02% 48.60%

XI XII XIII XIV XV
54.98% 63.02% 46.25% 52.70% 63.02%

Table 8 The versions of OneRule heuristic tested with
different weighting factors for v1 and v2

Priority function

OneRule–I v(j, m, t)¼ v1(j, m, t)� v2(j, m, t)
OneRule–II v(j, m, t)¼ 0� v1(j, m, t)þ 1� v2(j, m, t)
OneRule–III v(j, m, t)¼ 0.1� v1(j, m, t)þ 0.9� v2(j, m, t)
OneRule–IV v(j, m, t)¼ 0.2� v1(j, m, t)þ 0.8� v2(j, m, t)
OneRule–V v(j, m, t)¼ 0.3� v1(j, m, t)þ 0.7� v2(j, m, t)
OneRule–VI v(j, m, t)¼ 0.4� v1(j, m, t)þ 0.6� v2(j, m, t)
OneRule–VII v(j, m, t)¼ 0.5� v1(j, m, t)þ 0.5� v2(j, m, t)
OneRule–VIII v(j, m, t)¼ 0.6� v1(j, m, t)þ 0.4� v2(j, m, t)
OneRule–IX v(j, m, t)¼ 0.7� v1(j, m, t)þ 0.3� v2(j, m, t)
OneRule–X v(j, m, t)¼ 0.8� v1(j, m, t)þ 0.2� v2(j, m, t)
OneRule–XI v(j, m, t)¼ 0.9� v1(j, m, t)þ 0.1� v2(j, m, t)
OneRule–XII v(j, m, t)¼ 1� v1(j, m, t)þ 0� v2(j, m, t)

Table 9 Average percentage increase in total investment
generated by versions of the OneRule heuristic when compared

to OneRule-VII solutions

I II III IV
23.35% 35.03% 4.05% 0.60%

V VI VIII IX
�0.05% �0.20% 0.82% 2.02%

X XI XII
3.29% 4.46% 5.21%

412 Journal of the Operational Research Society Vol. 56, No. 4

for this performance is that a perfect score relative to one

scheduling aspect (v1 or v2 is zero) will turn the entire v score

into zero and hide a potentially bad score on the other

aspect, which is an undesirable property.

Table 10 shows the percentage of problem instances that

OneRule-VII (w factor of 0.5) out-performs the other

OneRule versions (out of 14 850 problems). A weighting

factor close to 0.5 gives close to optimal performance for this

heuristic.

Conclusions

This paper presents a new heuristic for the MMRIP. The

heuristic uses a single decision rule for selecting task, mode,

and starting time in a serial schedule generation scheme.

Extensive computational experimentation against heuristics

using separate common priority rules for task and mode

selection is carried out. The experimental results confirm the

effectiveness of the new heuristic.

Possible further research efforts could apply the same

approach with other priority rule concepts that arise from

time-based, resource-based, and network-based perspec-

tives.4 Additionally, investigation on how these priority

functions can be combined may provide further insight into

the MMRIP.

References

1 Mohring R (1984). Minimizing costs of resource requirements in
project networks subject to a fixed completion time. Opns Res
32: 89–120.

2 Icmeli O (1993). Project scheduling problems: a survey. Int J
Opns Prod Mngt 13: 80–91.

3 Sprecher A (1994). Resource-Constrained Project Scheduling:
Exact Methods for the Multi-Mode Case. Springer-Verlag:
Germany.

4 Kolisch R (1995). Project Scheduling under Resource Con-
straints. Physica-Verlag: Germany.

5 Herroelen W, De Reyck B and Demeulemeester E (1998).
Resource-constrained project scheduling: a survey of recent
developments. Comput Opns Res 25: 279–302.

6 Demeulemeester E (1995). Minimizing resource availability
costs in time-limited project networks. Mngt Sci 41: 1590–1598.

7 Neumann K and Zimmermann J (1999). Resource leveling for
projects with schedule-dependent time windows. Eur J Opl Res
117: 591–605.

8 Kurtulus I and Davis E (1982). Multi-project scheduling:
categorization of heuristic rules performance. Mngt Sci 28:
161–172.

9 Boctor F (1990). Some efficient multi-heuristic procedures
for resource-constrained project scheduling. Eur J Opl Res 49:
3–13.

10 Lawrence S and Morton T (1993). Resource-constrained multi-
project scheduling with tardy costs: comparing myopic, bottle-
neck, and resource pricing heuristics. Eur J Opl Res 64: 168–187.

11 Kolisch R (1996). Efficient priority rules for the resource-
constrained project scheduling problem. J Ops Mngt 14:
179–192.

12 Kelley JE (1963). The Critical-Path Method: Resource Planning
and Scheduling, Industrial Scheduling. Prentice-Hall: NJ,
pp 347–365.

13 Slowinski R (1981). Multiobjective network scheduling with
efficient use of renewable and nonrenewable resources. Eur J
Opl Res 7: 265–273.

14 Talbot B (1982). Resource-constrained project scheduling with
time-resource trade-offs: the non-preemptive case. Mngt Sci 28:
1197–1210.

Received August 2003;
accepted May 2004 after one revision

Table 10 The percentage of problems where OneRule-VII
out-performs other versions of the OneRule heuristic

I II III IV
91% 95% 70% 67%

V VI VIII IX
69% 77% 79% 76%

X XI XII
75% 77% 78%

C-C Hsu and DS Kim—Multi-mode resource investment problem 413

