SBR-project.rar (19.2 KB)

Hello, I wrote this code a while ago and it used to give me a solution. Now i downloaded the new gams 30 and it it started giving me infeasible result with the same parameters used in excel

I also had a problem viewing the parameters and the results in the GDX file.

set t /t1,t2,t3,t4,t5,t6/, i /i1,i2,i3/;

parameter lls(t,i);

$call GDXXRW SBR-project.xlsx trace=3 par=lls rng=Sheet1!b1:e7 rdim=1 cdim=1

$GDXIN SBR-project.gdx

$LOAD lls

$GDXIN

parameter rls(t,i);

$call GDXXRW SBR-project.xlsx trace=3 par=rls rng=Sheet1!h1:k7 rdim=1 cdim=1

$GDXIN SBR-project.gdx

$LOAD rls

$GDXIN

parameter L(t,i);

$call GDXXRW SBR-project.xlsx trace=3 par=L rng=Sheet1!c17:f23 rdim=1 cdim=1

$GDXIN SBR-project.gdx

$LOAD L

$GDXIN

parameter liso(t);

$call GDXXRW SBR-project.xlsx trace=3 par=liso rng=Sheet1!b10:c15 rdim=1

$GDXIN SBR-project.gdx

$LOAD liso

parameter bid(t);

$call GDXXRW SBR-project.xlsx trace=3 par=bid rng=Sheet1!e10:f15 rdim=1

$GDXIN SBR-project.gdx

$LOAD bid

$GDXIN

parameter lvpp(t);

$call GDXXRW SBR-project.xlsx trace=3 par=lvpp rng=Sheet1!h10:i15 rdim=1

$GDXIN SBR-project.gdx

$LOAD lvpp

$GDXIN

parameter tt(t);

$call GDXXRW SBR-project.xlsx trace=3 par=tt rng=Sheet1!c25:d30 rdim=1

$GDXIN SBR-project.gdx

$LOAD tt

$GDXIN

parameter S(t);

$call GDXXRW SBR-project.xlsx trace=3 par=S rng=Sheet1!n2:o7 rdim=1

$GDXIN SBR-project.gdx

$LOAD S

$GDXIN

variables E(t), D(t), G(t),rls2(t), of;

binary variables y(t), x(t), yls(t,i),ylr(t,i);

alias(i,ii);

alias(t,ttt)

equations eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9, eq10, Objective;

Objective(t,i) … sum((ttt),liso(ttt)* bid(ttt)- sum((ii), yls(ttt,ii)*lls(ttt,ii)*rls(ttt,ii))+lvpp(t)*D(ttt)-E(ttt)- (y(ttt)*555))=e=of;
eq1(t)… G(t)=e=D(t)+bid(t)-S(t)-6;
eq2(t)… G(t)=g=0;
eq3(t)… G(t)=l= x(t)*G(t)*G(t);

*6; eq4 (t)… G(t+1)=g= -tt(t) +G(t); eq5 (t)… G(t+1)=l= tt(t) +G(t); eq6 (t)… y(t)=e= max(0,(x(t)-x(t-1))); eq7 (t)… E(t)=e= 120+10*G(t)+0.09

eq8 (t,i)… rls2(t)=e=sum((ii),yls(t,ii)*rls(t,ii));

eq9 (t,i)… yls(t,i)=e=ylr(t,i);

eq10 (t,i)… D(t)=e=sum((ii),L(t,ii))-rls2(t);

G.lo(t)=0;

G.up(t) =6;

Model demandbid /all/

Solve demandbid us MINLP maximizing of;

display of.l, G.l, D.l;