I used modified version of Chapter 6 (Gcode6.6), of the following book:
Soroudi, Alireza. Power System Optimization Modeling in GAMS. Springer, 2017.
to model 3 buses network without load shedding and wind.
The original code modified can be found on this link:
https://www.gams.com/latest/psoptlib_ml/libhtml/psoptlib_MultiperiodDCOPF24bus.html
My modified code is pasted below:
$offText
Set
bus / 13 /
slack(bus) / 1 /
Gen / g1g2 /
t / t1*t24 /;
Scalar Sbase / 100 /;
Alias (bus,node);
Table GenData(Gen,*) ‘generating units characteristics’
b pmin pmax RU RD
g1 20 100 250 50 50
g2 30 100 250 40 40;
Set GBconect(bus,Gen) ‘connectivity index of each generating unit to each bus’
/ 1.g1
2.g2 /;
Table BusData(bus,*) ‘demands of each bus in MW’
Pd
2 200
3 60;
Table branch(bus,node,*) ‘network technical characteristics’
x Limit
1.2 0.1 200
1.3 0.2 60
2.3 0.2 80;
Table WD(t,*)
w d
t1 0.0786666666666667 1
t2 0.0866666666666667 0.944122690036197
t3 0.117333333333333 0.91306915602972
t4 0.258666666666667 0.499733282530006
t5 0.361333333333333 0.888874071251667
t6 0.566666666666667 0.8980186702229
t7 0.650666666666667 0.826786054486569
t8 0.566666666666667 0.851743189178891
t9 0.484 0.806039245570585
t10 0.548 0.887007048961707
t11 0.757333333333333 0.839016955610593
t12 0.710666666666667 0.852733854067441
t13 0.870666666666667 0.870642027052772
t14 0.932 0.834254143646409
t15 0.966666666666667 0.816536483139646
t16 1 0.819394170318156
t17 0.869333333333333 0.874071251666984
t18 0.665333333333333 1
t19 0.656 0.983615926843208
t20 0.561333333333333 0.936368832158506
t21 0.565333333333333 0.887597637645266
t22 0.556 0.809297008954087
t23 0.724 0.74585635359116
t24 0.84 0.733473042484283;
Set conex ‘bus connectivity matrix’ / 1.2, 1.3, 2.3 /;
conex(bus,node)$(conex(node,bus)) = 1;
branch(bus,node,‘x’)(branch(bus,node,'x')=0) = branch(node,bus,'x');
branch(bus,node,'Limit')(branch(bus,node,‘Limit’)=0) = branch(node,bus,‘Limit’);
branch(bus,node,‘bij’)$conex(bus,node) = 1/branch(bus,node,‘x’);
Variable OF, Pij(bus,node,t), Pg(Gen,t), delta(bus,t);
Equation const1, const2, const3, const4, const5;
const1(bus,node,t)$(conex(bus,node))…
Pij(bus,node,t) =e= branch(bus,node,‘bij’)*(delta(bus,t) - delta(node,t));
- active flow calculation between each pair of connected buses
const2(bus,t)…
sum(Gen$GBconect(bus,Gen), Pg(Gen,t)) - WD(t,‘d’)*BusData(bus,‘Pd’)/Sbase =e= sum(node$conex(node,bus), Pij(bus,node,t));
- nodal active power balance in each bus
const3…
OF =e= sum((bus,Gen,t)$GBconect(bus,Gen), Pg(Gen,t)*GenData(Gen,‘b’)*Sbase); - objective function calculation
const4(gen,t)…
Pg(gen,t+1) - Pg(gen,t) =l= GenData(gen,‘RU’)/Sbase;
const5(gen,t)…
Pg(gen,t-1) - Pg(gen,t) =l= GenData(gen,‘RD’)/Sbase;
Model loadflow / const1, const2, const3 /;
Pg.lo(Gen,t) = GenData(Gen,‘Pmin’)/Sbase;
Pg.up(Gen,t) = GenData(Gen,‘Pmax’)/Sbase;
delta.up(bus,t) = pi;
delta.lo(bus,t) =-pi;
delta.fx(slack,t) = 0;
Pij.up(bus,node,t)((conex(bus,node))) = 1*branch(bus,node,'Limit')/Sbase; Pij.lo(bus,node,t)((conex(bus,node))) =-1*branch(bus,node,‘Limit’)/Sbase;
solve loadflow minimizing OF using lp;
Parameter report(t,bus,*), Congestioncost,lmp(bus,t);
report(t,bus,‘Gen(MW)’) = sum(Gen$GBconect(bus,Gen), Pg.l(Gen,t))*sbase;
report(t,bus,‘Angle’) = delta.l(bus,t);
report(t,bus,‘load(MW)’) = BusData(bus,‘pd’)*WD(t,‘d’);
report(t,bus,‘LMP($/MWh)’) = const2.m(bus,t)/sbase;
Congestioncost = sum((bus,node,t)conex(bus,node), Pij.l(bus,node,t)*(-const2.m(bus,t) + const2.m(node,t)))/2;
lmp(bus,t) = report(t,bus,'LMP(/MWh)');
display report, Pij.l, Congestioncost,OF.l;
I have also included an attachment to this code.
The challenge I am facing is that the solution being reported by GAMS is the non optimal solution to the problem. I would appreciate it if any ideas can be shared as to why this may be happening.
3 Buses OPF Multiperiod.gms (4.22 KB)