divison by zero

Hi folks.
I am dealing with this error but I could not find the related problematic part because the Gams is showing me wrong line for the error.

Could you please help me how can i solve this issue and run my model?

sets
i /1*10/;
alias(i,j);


sets
spr /1*10/;



sets
k 'objective functions' /maxP, minc/;


binary variable
x(i) 
y(spr);



Parameter dir(k) direction of the objective functions 1 for max and -1 for min
   / maxp  +1
     minc -1
   /;
   

variable
z(k)  'objective function variables';


scalar
Dmin  /3/
Nmax /10/
Nmin  /0/
;


parameter
a(i) x-coordinate of x(i)  /
$call xls2gms r=a2:b11 i=kitap1.xlsx  o=koordinatx.inc
$include koordinatx.inc
/;


parameter
b(i) y-coordinate of x(i) /
$call xls2gms r=e2:f11 i=kitap1.xlsx o=koordinaty.inc
$include koordinaty.inc
/;


parameter
d1(spr) x-coordinate of y(spr)  /
$call xls2gms r=j2:k11 i=kitap1.xlsx o=koordinatx.inc
$include koordinatx.inc
/;


parameter
d2(spr) y-coordinate of y(spr) /
$call xls2gms r=n2:o11 i=kitap1.xlsx o=koordinaty.inc
$include koordinaty.inc
/;



parameter
m(i) big M;
m(i)=100000;


parameter
d(i,j) distance between i and j;
d(i,j)= sqrt(power((a(i)-a(j)),2)+power((b(i)-b(j)),2));



parameter
c(i,spr) distance between i and k;
c(i,spr)= sqrt(power((a(i)-d1(spr)),2)+power((b(i)-d2(spr)),2));

parameter
yeni(i,spr);
yeni(i,spr)$=(c(i,spr)<=5)=1;


parameter
n(i,j);
n(i,j)$(ord(i)<>ord(j) and d(i,j)<>0)= ((1 / power(d(i,j),3)));

variable
w(i);
w.l(i)= sum(j, (n(i,j)))-(0.1*sum(spr, yeni(i,spr)));


equations
obj1  'obj for maximizing p in K$'
obj2  'obj for minimizing c in Kt'
eq1
eq2
eq3
eq4
eq5
eq6
eq7
eq8
;


obj1..  sum(i, x(i)) =e= z('maxP');
obj2..sum(spr, y(spr))=e=z('minc');  
*objfunc2..z2=e=sum(k, y(k));
eq1..sum(i,x(i))=g=Nmin;
eq2..sum(i,x(i))=l=Nmax;
eq3..sum(spr, y(spr))=l=10;
eq4..sum(spr, y(spr))=g=1;
eq5(i, j)$(ord(i) <> ord(j) and d(i, j) <= Dmin ).. x(i) + x(j) =l= 1;
eq6(i)..w(i)+0.1*sum(spr, yeni(i,spr))+m(i)*(1-x(i))=g=sum(j$(ord(i)<>ord(j) and d(i,j)<>0),(n(i,j))*x(j));
eq7(i)..w(i)=g=0;
eq8..sum(i, w(i))=l=2.042
*eq8..2*sum(k, y(k))=l=10;

Model example / all /;

*---------------------------------------------------------------------------
$STitle eps-constraint method

Set k1(k) the first element of k, km1(k) all but the first elements of k;
k1(k)$(ord(k)=1) = yes; km1(k)=yes; km1(k1) = no;
Set kk(k)     active objective function in constraint allobj

Parameter
   rhs(k)     right hand side of the constrained obj functions in eps-constraint
   maxobj(k)  maximum value from the payoff table
   minobj(k)  minimum value from the payoff table
   numk(k) ordinal value of k starting with 1

Scalar
iter   total number of iterations
infeas total number of infeasibilities
elapsed_time elapsed time for payoff and e-sonstraint
start start time
finish finish time

Variables
   a_objval   auxiliary variable for the objective function
   obj        auxiliary variable during the construction of the payoff table
Positive Variables
   sl(k)      slack or surplus variables for the eps-constraints
Equations
   con_obj(k) constrained objective functions
   augm_obj   augmented objective function to avoid weakly efficient solutions
   allobj     all the objective functions in one expression;

con_obj(km1)..   z(km1) - dir(km1)*sl(km1) =e= rhs(km1);

* We optimize the first objective function and put the others as constraints
* the second term is for avoiding weakly efficient points

* objfun=max z1 + 0.001*(s1/r1+0.1 s2/r2+ 0.01*s3/r3+...)
augm_obj..
*  sum(k1,dir(k1)*z(k1))+1.0e-3*sum(km1,power(10,-(numk(km1)-1))*sl(km1)/(maxobj(km1)-minobj(km1))) =e= a_objval;
*  sum(k1,dir(k1)*z(k1))+1.0e-3*sum(km1$(maxobj(km1)-minobj(km1)),power(1000,-(numk(km1)-1))*sl(km1)/(maxobj(km1)-minobj(km1))) =e= a_objval;
  sum(k1,dir(k1)*z(k1))+1.0e-3*sum(km1,power(1000,-(numk(km1)-1))*sl(km1)/(maxobj(km1)-minobj(km1))) =e= a_objval;
allobj..  sum(kk, dir(kk)*z(kk)) =e= obj;

Model mod_payoff    / example, allobj / ;
Model mod_epsmethod / example, con_obj, augm_obj / ;

Parameter
  payoff(k,k)  payoff tables entries;
Alias(k,kp);

option optcr=0.0;
option limrow=0, limcol=0, solprint=off ;
$offlisting;
$offsymxref;
$offsymlist;
$offuelxref;
$offuellist;
*file cplexopt /cplex.opt/;
*put cplexopt;
*put 'threads 4'/;
*put 'parallelmode 1'/;
*putclose cplexopt;
*mod_epsmethod.optfile=1;
*option optca=0.;
*mod_payoff.optfile=1;
*mod_epsmethod.optfile=1;

* Generate payoff table applying lexicographic optimization
loop(kp,
  kk(kp)=yes;
  repeat
*    solve mod_payoff using mip maximizing obj;
    solve mod_payoff using mip maximizing obj;
    payoff(kp,kk) = z.l(kk);
    z.fx(kk) = z.l(kk);
*// freeze the value of the last objective optimized
    kk(k++1) = kk(k);
*cycle through the objective functions
  until kk(kp); kk(kp) = no;
* release the fixed values of the objective functions for the new iteration
  z.up(k) = inf; z.lo(k) =-inf;
);
if (mod_payoff.modelstat<>1 and mod_payoff.modelstat<>8, abort 'no optimal solution for mod_payoff');


File fx /C:\Users\Şeyda\Desktop\Augmecon2\50nokta\payofftable.out / ;


PUT fx ' PAYOFF TABLE'/   ;
loop (kp,
        loop(k, put payoff(kp,k):12:2);
        put /;
     );
put fx /;

*display payoff;
minobj(k)=smin(kp,payoff(kp,k));
*minobj(k)=0;
maxobj(k)=smax(kp,payoff(kp,k));

**$ontext
*$set fname h.%scrext.dat%

*gridpoints=max integer of km1 = 4149  or 1093
*$if not set gridpoints $set gridpoints 822
$if not set gridpoints $set gridpoints 10
Set g grid points /g0*g%gridpoints%/
    grid(k,g) grid
Parameter
    gridrhs(k,g) rhs of eps-constraint at grid point
    maxg(k) maximum point in grid for objective
    posg(k) grid position of objective
    firstOffMax, lastZero some counters
*    numk(k) ordinal value of k starting with 1
    numg(g) ordinal value of g starting with 0
    step(k) step of grid points in objective functions
    jump(k) jumps in the grid points' traversing
;
lastZero=1; loop(km1, numk(km1)=lastZero; lastZero=lastZero+1); numg(g) = ord(g)-1;

grid(km1,g) = yes;
*Here we could define different grid intervals for different objectives
*aşağıdaki satırda $'lı koşul ekledim. 
maxg(km1)$(smax(grid(km1,g), numg(g))) = smax(grid(km1,g), numg(g));
*aşağıdaki satırda $'lı koşul ekledim.
step(km1)$(maxg(km1))=(maxobj(km1)- minobj(km1))/maxg(km1);
gridrhs(grid(km1,g))$(dir(km1)=-1) = maxobj(km1) - numg(g)/maxg(km1)*(maxobj(km1)- minobj(km1));
gridrhs(grid(km1,g))$(dir(km1)=1) = minobj(km1) + numg(g)/maxg(km1)*(maxobj(km1)- minobj(km1));
*display gridrhs;

PUT fx ' Grid points'/   ;
loop (g,
        loop(km1, put gridrhs(km1,g):12:2);
        put /;
     );
put fx /;
put fx 'Efficient solutions'/;

* Walk the grid points and take shortcuts if the model becomes infeasible
posg(km1) = 0;
iter=0;
infeas=0;

start=jnow;

repeat
  rhs(km1) = sum(grid(km1,g)$(numg(g)=posg(km1)), gridrhs(km1,g));
*  solve mod_epsmethod maximizing a_objval using mip;
  solve mod_epsmethod maximizing a_objval using mip;
  iter=iter+1;
  if (mod_epsmethod.modelstat<>1 and mod_epsmethod.modelstat<>8,
*not optimal is in this case infeasible
    infeas=infeas+1;
    put fx iter:5:0, '  infeasible'/;
    lastZero = 0; loop(km1$(posg(km1)>0 and lastZero=0), lastZero=numk(km1));
    posg(km1)$(numk(km1)<=lastZero) = maxg(km1);
*skip all solves for more demanding values of rhs(km1)
  else
    put fx iter:5:0;
    loop(k, put fx z.l(k):12:2);
    put fx ' *** ';
*// put /;
*desicion variables section
    loop(J, put fx X.l(J):1:0);
*end desicion variables section
    loop(km1, put fx sl.l(km1):12:2);
    put fx ' *** ';
*// put /;
    jump(km1)=1;
*   find the first off max (obj function that hasn't reach the final grid point).
*   If this obj.fun is k then assign jump for the 1..k-th objective functions
    firstOffMax = 0;
    loop(km1$(posg(km1)<maxg(km1) and firstOffMax=0), firstOffMax=numk(km1));
    jump(km1)$(numk(km1)<=firstOffMax)=1+floor(sl.L(km1)/step(km1));
*    put ' lastzero= ', lastzero:3:0 ;
    loop(km1, put fx jump(km1):5:0) ;
    loop(km1$(jump(km1)>1),put '   jump');
    put /;
    );
* Proceed forward in the grid
  firstOffMax = 0;
  loop(km1$(posg(km1)<maxg(km1) and firstOffMax=0), posg(km1)=min((posg(km1)+jump(km1)),maxg(km1)); firstOffMax=numk(km1));
  posg(km1)$(numk(km1)<firstOffMax) = 0;
*until sum(km1$(posg(km1)=maxg(km1)),1)= card(km1) and firstOffMax=0;
until sum(km1$(posg(km1)=maxg(km1)),1)= card(km1) and firstOffMax=0;

finish=jnow;
elapsed_time=(finish-start)*86400;

put /;
put 'Infeasibilities = ', infeas:5:0 /;
put 'Elapsed time: ',elapsed_time:10:2, ' seconds' / ;
*$offtext
putclose fx;
*close the point file

display x.l;
display w.l;
**$offtext

Hi,

Unfortunately it is not possible to run your code without the Excel-file.

Regards,
GFA

Sorry,

see in attached!
Kitap1.xlsx (8.82 KB)

Hi,

Because of the $include the numbering in the IDE is not correct. Have a look at the listing file where all of your code is printed (including $include files) and the numbering is correct. It shows that the problem is in “augm_obj” equation. It seems like the value of “maxobj” is equal to “minobj” making the denominator zero, hence the “division by zero” error.

Hope this helps.

Regards,
GFA